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ABSTRACT

Ali, Shoukat, M.S.E.E., Purdue University, August, 1999. A Comparative Study of
Dynamic Mapping Heuristics for a Class of Independent Tasks onto Heterogeneous
Computing Systems. Major Professor: Howard Jay Siegel.

Heterogeneous computing (HC) is the coordinated use of different types of ma-
chines, networks, and interfaces to maximize their combined performance and/or cost-
effectiveness. In an HC system, tasks need to be matched to machines, and the execution
of the tasks must be scheduled. This thesis reviews some of the different types of distributed
and parallel HC environments, and examines some research issues in HC systems consist-
ing of a network of different machines. The latter purpose is pursued by considering: (1)
a quantification of heterogeneity; (2) a taxonomical examination of a number of mapping
(matching and scheduling) heuristics, and (3) a comparative study of a sampling of dynamic
mapping heuristics.

A model for heterogeneous environments is developed to allow evaluation of mapping
heuristics through simulation. This model allows different degrees and types of hetero-
geneity to be expressed.

A number of mapping heuristics from the literature are examined with respect to a
recently proposed taxonomy for the classification of mapping heuristics for HC environ-
ments. The taxonomy is defined in three major parts: (a) the models used for applications
and communication requests, (b) the models used for target hardware platforms, and (c) the
characteristics of mapping heuristics.

Simulation studies are performed to compare two types of dynamic mapping heuristics:
immediate mode and batch mode heuristics. In total, five immediate mode heuristics and
three batch mode heuristics are examined. The immediate mode dynamic heuristics con-
sider, to varying degrees and in different ways, task affinity for different machines and
machine ready times. The batch mode dynamic heuristics consider these factors, as well
as the aging of tasks waiting to execute. The simulation results can be used to choose the
dynamic mapping heuristic to use in a given heterogeneous environment.



CHAPTER 1

INTRODUCTION

In general, heterogeneous computing (HC) is the coordinated use of different types of

machines, networks, and interfaces to maximize their combined performance and/or cost-

effectiveness [15, 21, 36]. HC is an important technique for efficiently solving collections

of computationally intensive problems [18]. As machine architectures become more ad-

vanced to obtain higher peak performance, the extent to which a given task can exploit

a given architectural feature depends on how well the task’s computational requirements

match the machine’s advanced capabilities. The applicability and strength of HC systems

are derived from their ability to match computing needs to appropriate resources.

One way of exploiting an HC environment is to decompose a task into subtasks, where

each subtask is computationally well suited to a single machine architecture, but different

subtasks may have different computational needs (e.g., [55]). These subtasks may share

stored or generated data, creating the potential for inter-machine dependencies and da-

ta transfer overhead. Once the subtasks are obtained, each subtask is assigned to a ma-

chine (matching). Then the subtasks and any inter-machine data transfers are ordered

(scheduling) so as to optimize some objective function. The overall problem of match-

ing and scheduling is referred to as mapping. The objective function can be the overall

completion time of the task, or a more complex function of multiple requirements.

In some cases, a collection of independent tasks must be mapped, instead of a set of

inter-dependent subtasks. Such an independent set of tasks is called a meta-task [20]. An

example of meta-task mapping is the mapping of an arbitrary set of independent tasks from

different users waiting to execute on a heterogeneous suite of machines. Each task in the

meta-task may have associated requirements, such as a deadline and a priority.
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One broad objective of the HC community is to design a management system for HC

resources (machines, networks, data repositories, etc.) [36]. One important issue within

this arena is the design of a mapping system that makes good decisions. Such a system has

to be provided with an objective function that it tries to optimize. Current research involves

formulating an optimization criterion that will be a function of a set of quality of service

(QoS) attributes that are likely to be requested by tasks expected in a given HC environment

[31]. This optimization criterion will also serve as a measure of the performance of various

mapping approaches available to the community, as well as a means of evaluating overall

resource management approaches in general.

The scheduling advisor may have to choose between static and dynamic approaches

to the mapping of tasks. Static approaches are likely to suffice if the tasks to be mapped

are known beforehand, and if predictions about the HC resources are likely to be accurate.

Dynamic approaches to mapping are likely to be more helpful if status of the HC system

can change randomly, and if the tasks that are supposed to be mapped cannot be determined

beforehand. The general problem of developing an optimal matching of tasks to hosts is

NP-hard [16]. The goal of this thesis is to: (1) review some of the different types of

distributed and parallel HC environments; and (2) examine some research issues in HC

systems consisting of a network of different machines. The latter purpose is pursued by

considering: (1) a quantification of heterogeneity; (2) a characterization of techniques for

mapping tasks on HC systems; (3) an example HC resource management system; and (4)

static and dynamic heuristics for mapping tasks to machines in such HC systems.

Chapters 2 and 3 provide background material for HC systems. Chapter 2 briefly de-

scribes some broad classes of HC systems. An example system for managing resources in

HC systems is discussed in Chapter 3. Most of Chapter 4, part of Chapter 5, and all of

Chapter 6 present the research performed for this thesis. In Chapter 4, degrees and class-

es of heterogeneity are described. This chapter charaterizes an HC environment in terms

of how “heterogeneous” it is. This characterization is then used to simulate different HC

environments, which are needed to evaluate the performance of mapping heuristics under
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different circumstances. Chapter 5 classifies heuristics for mapping independent tasks onto

a class of HC systems. This chapter enhances an earlier research effort, and gives sample

taxonomical examinations for some heuristics as part of the research for this thesis. Chap-

ter 6 presents simulation studies that compare eight heuristics from two types of dynamic

mapping heuristics under a variety of representative HC environments. The comparison

of dynamic mapping techniques described in Chapter 6 are the focus, and one of the main

results of this thesis. The static mapping methods in Chapter 7 are summarized from [7],

and are included in this thesis as related work.
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CHAPTER 2

PARALLEL AND DISTRIBUTED HETEROGENEOUS
COMPUTING SYSTEMS

There is great variety in the types of parallel and distributed HC systems. In this chapter,

the broad field of HC systems is reviewed as background for the rest of the thesis. Three

broad classes are briefly described: mixed mode, multi-mode, and mixed-machine. The

remainder of the thesis focuses on mixed-machine systems.

A mixed-mode HC system refers to a single parallel processing system, whose proces-

sors are capable of executing in either the synchronous SIMD or the asynchronous MIMD

mode of parallelism, and can switch between the modes at the instruction level with negligi-

ble overhead [48]. Thus, a mixed-mode machine is temporally heterogeneous, in that it can

operate in different modes at different times. This permits different modes of parallelism to

be used to execute various portions of a program. The goal of mixed-mode HC systems is

to provide in a single machine the best attributes of both the SIMD and the MIMD modes.

PASM, TRAC, OPSILA, Triton, and EXECUBE are examples of mixed-mode HC systems

that have been prototyped [48].

Because there are various trade-offs between the SIMD and MIMD modes of parallelis-

m, mixed-mode machines can exploit these by matching each portion of a given program

with the mode that results in the best overall program performance. Studies have shown

that for a given program, a mixed-mode machine may outperform a single-mode machine

with the same number of processors (e.g., [17]).

Multi-mode HC is similar to mixed-mode HC in the sense that multiple modes of com-

putation are provided within one machine. However, it is different because all modes of

computation can be used simultaneously. An example multi-mode architecture is the image
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understanding architecture (IUA) [56]. In IUA, heterogeneity is incorporated by having

multiple processing layers, where each layer provides a different form and mode of com-

putation. Two levels of MIMD and one level of SIMD processors are included in this

system.

Thus, mixed-mode and multi-mode systems represent one extreme of HC, where the

heterogeneity resides in a single machine. For more about such systems, see [15].

In mixed-machine HC systems, a heterogeneous suite of machines is interconnected by

high-speed links to function as a metacomputer [30] or a grid [18]. (The grid refers to a

large-scale pooling of resources to provide dependable and inexpensive access to high-end

computational capabilities [18].) A mixed-machine HC system coordinates the execution

of various components of a task or meta-task on different machines within the system

to exploit the different architectural capabilities available, and achieve increased system

performance [36].
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CHAPTER 3

MSHN: AN EXAMPLE RESOURCE MANAGEMENT SYSTEM

3.1 Overview

A resource management system (RMS) views the set of heterogeneous machines that

it manages as a single virtual machine, and attempts to give the user a location-transparent

view of the virtual machine [43]. The RMS should be able to provide the users a higher

level of overall performance than would be available from the users’ local system alone.

The Management System for Heterogeneous Networks (MSHN, pronounced “mis-

sion”) [24] is an RMS for use in HC environments. MSHN is a collaborative research

effort that includes the Naval Postgraduate School, NOEMIX, Purdue University, and the

University of Southern California. It builds on SmartNet, an operational scheduling frame-

work and system for managing resources in an HC environment developed at NRaD [19].

This chapter is a summary of [24]. It has been included to show how the mapping

heuristics studied here fit into an RMS. Furthermore, most of the research in this thesis has

been funded and motivated by the MSHN project.

The technical objective of the MSHN project is to design, prototype, and refine a

distributed RMS that leverages the heterogeneity of resources and tasks to deliver the

requested QoS. To this end, MSHN is investigating: (1) the accurate, task-transparent de-

termination of the end-to-end status of resources; (2) the identification of different opti-

mization criteria and how non-determinism and the granularity of application and platform

models (as outlined by the Purdue HC Taxonomy [6] which is extended in Chapter 5) affect

the performance of various mapping heuristics that optimize those criteria; (3) the determi-

nation of how security should be incorporated within components as well as how to account
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for security as a QoS attribute; and (4) the identification of problems inherent in application

and system characterization.

3.2 MSHN Architecture

Figure 3.1 shows the conceptual architecture of MSHN. As seen in the figure, every

task running within MSHN makes use of the MSHN Client Library (CL) that intercepts the

task’s operating system calls.

Resource
Status
Server

Client 

(CL)
Library

    

Requirements
Resource

Database
(RRD)

Daemon

call-back

(or emulator)

(RSS)

Scheduling Advisor
(SA)

call-back
query/response

query/
response
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ba
ck
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start

update
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Fig. 3.1. High-level block diagram of the functional architecture of MSHN.

The Scheduling Advisor (SA) determines which set of resources a newly arrived task

(or equivalently, a newly started process) should use. Using the terminology from Section

1, the SA is a mapper.
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The Resource Status Server (RSS) is a quickly changing repository that maintains in-

formation concerning the current availability of resources. Information is stored in the

RSS as a result of updates from both the CL and the SA. The CL can update the RSS as to

the currently perceived status of resources, which takes into account resource loads due to

processes other than those managed by MSHN.

The Resource Requirements Database (RRD) is responsible for maintaining informa-

tion about the resources that are required to execute a particular task. The RRD’s current

source of information about a task is the data collected by the CL from the previous runs

of the task. The RRD has the ability to maintain very fine grain experiential information

collected by the CL, and it is hoped that, in the future, it can also be populated with infor-

mation from smart compilers and directives from task writers.

When the CL intercepts a request to execute a new task, it invokes a mapping request

for that task on the SA (assuming that the task requests to be mapped through the SA).

The SA queries both the RRD and the RSS. It uses the received information, along with an

appropriate search heuristic, to determine the resources that should host the new process.

Then, the SA returns the decision to the CL, which, in turn, requests execution of that pro-

cess through the appropriate MSHN Daemon. The MSHN Daemon invokes the application

on its machine.

As a process executes, the CL updates both the RSS and the RRD with the current status

of the system resources and the requirements of the process. Meanwhile, the SA establishes

call-backs with both the RRD and the RSS to notify the SA if either the status of the

resources has significantly changed, or the actual resource requirements are substantially

different than what was initially returned from the RRD. In either case, if it appears that

the assigned resources can no longer deliver the required QoS, the application must be

terminated or adapted (e.g., use an alternative implementation that may deliver lower QoS,

but requires less resources). Upon receipt of a call-back, the SA may require that several

of the applications adapt so that more of them can receive their requested QoS.
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3.3 Research Issues for MSHN’s Scheduling Advisor

The formulation of an optimization criterion for mapping tasks in complex HC envi-

ronments is currently being researched in the HC community. Resource allocation involves

heuristically solving an NP-complete optimization problem. MSHN is developing a cri-

terion that maximizes a weighted sum of values that represents the benefits of delivering

the required and desired QoS (including security, priorities, and preferences for versions),

within the specified deadlines, if any. MSHN attempts to account for both preferences for

various versions and priorities. That is, when it is impossible to deliver all of the most

preferred QoS within the specified deadlines due to insufficient resources, MSHN’s op-

timization criterion is used to decide which resources to allocate to tasks. In MSHN’s

optimization criterion, deadlines can be simple or complex. That is, sometimes a a piece

of information is of significance to the user only if it is received before a specific time. At

other times, a user would like to associate a more general benefit function, which would

indicate how beneficial the information is to the user depending on when it is received.

Further information about MSHN’s optimization criterion can be found in [31].

The relative performance of mapping heuristics is another research issue. For certain

types of HC environments, the MSHN team has obtained a variety of results identifying the

regions of heterogeneity where certain heuristics perform better than others for maximizing

throughput by minimizing the time at which the last application, of a set of applications,

should complete (e.g., [2, 7, 34]). Re-targeting of these heuristics to other optimization cri-

teria is currently underway. Additionally, MSHN team members have performed extensive

research into accounting for dependencies among subtasks (e.g., [3, 4, 5, 55]).

The next two chapters present some of the MSHN research in the dynamic and static

mapping of meta-tasks in HC environments. The dynamic mapping techniques described in

Chapter 6 are one of the main results of this thesis. The static mapping methods in Chapter

7 are summarized from [7], and are included in this thesis as related work.
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CHAPTER 4

DEGREES AND CLASSES OF MIXED-MACHINE
HETEROGENEITY

4.1 Overview

The goal of this chapter is to characterize an HC environment in terms of how “het-

erogeneous” it is. This characterization is needed to simulate different HC environments.

These simulated HC environments are then used to test the relative performance of different

mapping heuristics under different circumstances.

Given a set of heuristics and a characterization of HC environments, one can determine

the best heuristic to use in a given environment for optimizing a given objective function.

In addition to increasing one’s understanding of the operation of different heuristics, this

knowledge can help one choose a “good” heuristic in a particular HC environment.

A model for describing an HC system is presented in Section 4.2. Based on that

model, two techniques for simulating an HC environment (range-based and coefficient-of-

variation-based) are described in Section 4.3. The range-based technique is used to create

simulated HC environment in Chapters 6 and 7.

4.2 Modeling Heterogeneity

Heuristics that match a task to a machine can vary in the information they use. At

the very least, a current candidate task can be assigned to the machine that becomes free

soonest (even if the task may take a much longer time to execute on that machine than

elsewhere). In another approach, the task may be assigned to the machine where it executes

fastest. Or the current candidate task may be assigned to the machine that completes the

task soonest, i.e, the machine which minimizes the sum of task execution time and the
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machine ready time, where machine ready time for a particular machine is the time when

that machine becomes free after having executed the tasks previously assigned to it.

The discussion above should reveal that more sophisticated (and possibly wiser)

approaches to the mapping problem require estimates of the execution times of all tasks

(that can be expected to arrive for service) on all the machines present in the HC suite to

make better mapping decisions. The actual task execution times on all machines are not

likely to be known. What is typically assumed in the HC literature is that estimates of the

expected execution times of tasks on all machines are known (e.g., [22, 29, 49]). These

estimates could be built from analytical profiling of the code and data in the tasks, could

be derived from the previous executions of a task on a machine, or provided by the user.

(Approaches for doing this estimation based on task profiling and analytical benchmarking

are discussed in [36].)

To better evaluate the behavior of the mapping heuristics, a model of execution times of

the tasks on the machines is needed so that the parameters of this model can be changed to

investigate the performance of the heuristics under different HC systems and under different

sets of tasks to be mapped. One such model consists of an “expected time to compute”

(ETC) matrix. The ETC matrix is stored in the mapper, and contains the estimates for the

expected execution times of a task on all machines, for all the tasks that are expected to ar-

rive for service. (Although stored in the mapper, the ETC information may be derived from

other components of the RMS (e.g, see Chapter 3).) In an ETC matrix, the elements along

a row indicate the estimates of the execution times of a given task on different machines,

and those along a column give the estimates of execution times of different tasks on a given

machine.

The ETC model can be characterized by three parameters: machine heterogeneity, task

heterogeneity, and consistency. The variation along a row is referred to as the machine

heterogeneity; this is the degree to which the machine execution times vary for a given

task [2]. A system’s machine heterogeneity is based on a combination of the machine

heterogeneities for all tasks (rows). A system comprised mainly of workstations of similar
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speeds can be said to have “low” machine heterogeneity. A system consisting of diversely

capable machines, e.g., a collection of SMP’s, workstations, and supercomputers, may be

said to have “high” machine heterogeneity.

Similarly, the variation along a column of an ETC matrix is referred to as the task

heterogeneity; this is the degree to which the task execution times vary for a given machine

[2]. A system’s task heterogeneity is based on a combination of the task heterogeneities

for all machines (columns). “High” task heterogeneity may occur when the computational

needs of the tasks vary very much, e.g., when both time-consuming simulations and fast

compilations of small programs are performed. “Low” task heterogeneity may typically be

seen in the jobs submitted by the users solving similarly complex problems.

Based on the above idea, four categories were proposed for the ETC matrix in [2]: (a)

high task heterogeneity and high machine heterogeneity (HiHi), (b) high task heterogeneity

and low machine heterogeneity (HiLo), (c) low task heterogeneity and high machine het-

erogeneity (LoHi), and (d) low task heterogeneity and low machine heterogeneity (LoLo).

The ETC matrix can be further classified into two classes, consistent and inconsistent

[2], which are orthogonal to the previous classifications. For a consistent ETC matrix, if

machine�� has a lower execution time than machine�	 for task ��, then the same is true

for any task �
. In inconsistent ETC matrices, the relationships among the execution times

for different tasks on different machines are unpredictable. The inconsistent case represents

a mix of task computational requirements and machine capabilities such that no ordering

as that in the consistent case is possible. Inconsistent ETC matrices occur in practice when:

(1) there is a variety of different machine architectures in the HC suite (e.g., parallel ma-

chines, superscalars, workstations), and (2) there is a variety of different computational

needs among the tasks (e.g., readily parallelizable tasks, difficult to parallelize tasks, tasks

that are floating point intensive, simple text formatting tasks). Thus, the way in which a

task’s needs correspond to a machine’s capabilities may differ for each possible pairing of

tasks to machines.
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A combination of these two cases, which may be more realistic in many environments,

is the semi-consistent ETC matrix, which is an inconsistent matrix with a consistent sub-

matrix [7, 34]. As an example, in a given semi-consistent ETC matrix, 50% of the tasks

and 25% of the machines may define a consistent sub-matrix.

Formally, semi-consistent is different from both consistent and inconsistent hetero-

geneities. It does not satisfy the consistency property of the former or the randomness

property of the latter.

A trivial case of semi-consistency always exists; for any two machines in the HC suite,

at least 50% of the tasks will show consistent execution time orderings. For more than two

machines, consistency becomes much harder to achieve.

4.3 Generating ETC Matrices

Any method for generating ETC matrices will require that heterogeneity be defined

mathematically. In the range-based ETC generation technique, the heterogeneity of a set of

execution time values is quantified by the range of the execution times [38]. This definition

of heterogeneity can be used to generate ETC matrices modeling representative HC envi-

ronments. The procedures given in this section for generating ETC matrices produce incon-

sistent ETC matrices. It is shown later in this section how consistent and semi-consistent

ETC matrices could be obtained from the inconsistent ETC matrices.

Assume� is the total number of machines in the HC suite, and � is the total number of

tasks expected to be serviced by the HC system. Let 	�
� �	 be a number sampled from a

uniform distribution with a range from 
 to �. (Each invocation of 	�
� �	 returns a new

sample.) Let ����� and ����� be numbers representing task heterogeneity and machine

heterogeneity, respectively, such that higher values for ����� and ����� represent higher

heterogeneities. Then an ETC matrix �
�������	� �������	�, for a given task heterogeneity

and a given machine heterogeneity, can be generated by the range-based method given in

Figure 4.1.
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As shown in Figure 4.1, each iteration of the outer for loop samples a uniform distri-

bution with a range from 1 to ����� to generate one value for a vector 
. For each element

of 
 thus generated, the � iterations of the inner for loop (Line 3) generate one row of

the ETC matrix. For the �-th iteration of the outer for loop, each iteration of the inner for

loop produces one element of the ETC matrix by multiplying 

�� with a random number

sampled from a uniform distribution ranging from 1 to �����.

(1) for � from 0 to (�� �)
(2) 

�� � 	��� �����	
(3) for � from 0 to (�� �)
(4) �
�� �� � 

�� � 	��� �����	
(5) endfor
(6) endfor

Fig. 4.1. The range-based method for generating ETC matrices.

In the range-based ETC generation, it is possible to obtain HiLo ETC matrices with

characteristics similar to that of LoHi ETC matrices if ����� � �����. In realistic HC

systems, the variation that tasks show in their computational needs is generally larger than

the variation that machines show in their capabilities. It is assumed here that requirements

of high heterogeneity tasks are likely to be more heterogeneous than the capabilities of

high heterogeneity machines. Furthermore, low heterogeneity in both machines and tasks

is assumed to be same.

Table 4.1 shows typical values for ����� and ����� for low and high heterogeneities.

Tables 4.2 through 4.5 show four ETC matrices generated by the range-based method. The

values of ����� and ����� used for generating these ETC matrices are the ones given in

Table 4.1.

A variation of the procedure in Figure 4.1 defines the coefficient of variation, � , of

execution time values as a measure of heterogeneity (instead of the range of execution time
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Table 4.1 Typical values for ����� and ����� for a realistic HC system

High heterogeneity Low heterogeneity
Task ��� ���

Machine ��� ���

Table 4.2 A HiLo matrix generated by the range-based method using �� and �� values of
Table 4.1

�� �� �� �� �� �� ��

�� 333304 375636 198220 190694 395173 258818 376568
�� 442658 400648 346423 181600 289558 323546 380792
�� 75696 103564 438703 129944 67881 194194 425543
�� 194421 392810 582168 248073 178060 267439 611144
�� 466164 424736 503137 325183 193326 241520 506642
�� 665071 687676 578668 919104 795367 390558 758117
�� 177445 227254 72944 139111 236971 325137 347456
�� 32584 55086 127709 51743 100393 196190 270979
�� 311589 568804 148140 583456 209847 108797 270100
��	 314271 113525 448233 201645 274328 248473 170176
��� 272632 268320 264038 140247 110338 29620 69011
��� 489327 393071 225777 71622 243056 445419 213477

values). Let � and � be the standard deviation and mean of a set of execution time values,

respectively. Then � � ���. The coefficient-of-variation-based ETC generation method

provides a greater control over spread of values (i.e., heterogeneity) in any given row or

column of the ETC matrix than the range-based method.

The coefficient-of-variation-based ETC generation method works as follows. A “task

vector,” 
, of expected execution times with the desired task heterogeneity must be gen-

erated. Essentially, 
 is a vector whose values represent the task execution times on an

“average” machine in the HC suite. For example, if the HC suite consists of an IBM SP/2,
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Table 4.3 A HiHi matrix generated by the range-based method using �� and �� values of
Table 4.1

�� �� �� �� �� �� ��

�� 2425808 3478227 719442 2378978 408142 2966676 2890219
�� 2322703 2175934 228056 3456054 6717002 5122744 3660354
�� 1254234 3182830 4408801 5347545 4582239 6124228 5343661
�� 227811 419597 13972 297165 438317 23374 135871
�� 6477669 5619369 707470 8380933 4693277 8496507 7279100
�� 1113545 1642662 303302 244439 1280736 541067 792149
�� 2860617 161413 2814518 2102684 8218122 7493882 2945193
�� 1744479 623574 1516988 5518507 2023691 3527522 1181276
�� 6274527 1022174 3303746 7318486 7274181 6957782 2145689
��	 1025604 694016 169297 193669 1009294 1117123 690846
��� 2390362 1552226 2955480 4198336 1641012 3072991 3262071
��� 96699 882914 63054 199175 894968 248324 297691

Table 4.4 A LoLo matrix generated by the range-based method using �� and �� values
of Table 4.1

�� �� �� �� �� �� ��

�� 22 21 6 16 15 24 13
�� 7 46 5 28 45 43 31
�� 64 83 45 23 58 50 38
�� 53 56 26 42 53 9 58
�� 11 12 14 7 8 3 14
�� 33 31 46 25 23 39 10
�� 24 11 17 14 25 35 4
�� 20 17 23 4 3 18 20
�� 13 28 14 7 34 6 29
��	 2 5 7 7 6 3 7
��� 16 37 23 22 23 12 44
��� 8 66 47 11 47 55 56

an Alpha server, and a Sun Sparc 5 workstation, then 
 would represent estimated execution

times of the tasks on the Alpha server.
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Table 4.5 A LoHi matrix generated by the range-based method using �� and �� values of
Table 4.1

�� �� �� �� �� �� ��

�� 440 762 319 532 151 652 308
�� 459 205 457 92 92 379 60
�� 499 263 92 152 75 18 128
�� 421 362 347 194 241 481 391
�� 276 636 136 355 338 324 255
�� 89 139 37 67 9 53 139
�� 404 521 54 295 257 208 539
�� 49 114 279 22 93 39 36
�� 59 35 184 262 145 287 277
��	 7 235 44 81 330 56 78
��� 716 601 75 689 299 144 457
��� 435 208 256 330 6 394 419

To generate 
, two input parameters are needed: ����� and �����. The input parameter,

����� is used to set the average of the values in 
. The input parameter ����� is the desired

coefficient of variation of the values in 
. The value of ����� quantifies task heterogeneity,

and is larger for higher task heterogeneity. Each element of the task vector 
 is then used to

produce one row of the ETC matrix such that the desired coefficient of variation of values

in each row is �����, another input parameter. The value of ����� quantifies machine

heterogeneity, and is larger for higher machine heterogeneity. Thus �����, �����, and �����

are the three input parameters for coefficient-of-variation-based ETC generation method.

A direct approach to simulating HC environments should use the probability distribu-

tion that is empirically found to represent closely the distribution of task execution times.

However no benchmarks for HC systems are currently available. Therefore this research

uses a distribution which is as flexible as possible. A gamma distribution can be used for

the coefficient-of-variation-based ETC generation method because of the flexibility it al-

lows. The distribution is defined in terms of characteristic shape parameter, �, and scale
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parameter, �. The characteristic parameters of the gamma distribution can be fixed to gen-

erate different distributions. For example, if � is fixed to be an integer, than gamma distri-

bution becomes an Erlang-k distribution. If � is large, then gamma distribution approaches

a Gaussian distribution. Future work in this area should attempt to find out the distribution

of task execution times, and see if gamma distribution is a good choice. THe ETC matri-

ces generated here may or may not correspond to actual scenarios. (Note that the uniform

distribution can also be used for the coefficient-of-variation-based method.)

Figures 4.2 and 4.3 show how a gamma density function changes with the shape param-

eter �. When the shape parameter increases from two to eight, the shape of the distribution

changes from a curve biased to left to a more balanced bell-like curve. Figures 4.4 and 4.5

show the effect on the distribution caused by increase in scale parameter from 16 to 32.

The two-fold increase in scale parameter does not change the shape of the graph (the curve

is still biased to the left); however the curve now has a twice as large domain (i.e., range on

x-axis).

The distribution’s characteristic parameters, � and �, can be easily interpreted in terms

of �����, �����, and �����. For a gamma distribution, � � �
�
� , and � � ��, so that

� � ��
�
� . Let ���� �	 be a number sampled from a gamma distribution with the given

parameters. (Each invocation of ���� �	 returns a new sample.) Figure 4.6 shows the

procedure for the coefficient-of-variation-based ETC generation.

Given the three input parameters, ������ �����, and �����, Line (1) of Figure 4.6 de-

termines the shape parameter ����� and scale parameter ����� of the gamma distribution
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Fig. 4.2. Gamma probability density function for � � �� � � �.
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Fig. 4.3. Gamma probability density function for � � �� � � �.

which will be later sampled to build the task vector 
. Line (1) also calculates the shape

parameter ����� to use later in Line (6). In the �-th iteration of the outer for loop in Figure

4.6, a gamma distribution with parameters ����� and ����� is sampled to obtain 

��. Then



�� is used to determine the scale parameter �����
�� (to be used later in Line (6)). For �-th

iteration of the outer for loop, each iteration of the inner for loop produces one element of

the �-th row of the ETC matrix by multiplying 

�� with a random number sampled from a
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Fig. 4.4. Gamma probability density function for � � �� � � ��.
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Fig. 4.5. Gamma probability density function for � � �� � � ��.

gamma distribution with parameters, ����� and �����
��. Note that while each row in the

ETC matrix has gamma distributed execution times, the execution times in columns are not

gamma distributed.

The ETC generation method of Figure 4.6 can be used to generate HiHi, HiLo, and

LoLo ETC matrices, but cannot generate LoHi ETC matrices. To satisfy the heterogeneity
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(1) ����� � �������
�; ����� � �������

�; ����� � �����������
(2) for � from 0 to (�� �)
(3) 

�� � �������� �����	

/* 

�� will be used as mean of �-th row of ETC matrix */
(4) �����
�� � 

�������� /* scale parameter for �-th row */
(5) for � from 0 to (�� �)
(6) �
�� �� � �������� �����
��	 /* �-th row */
(7) endfor
(8) endfor

Fig. 4.6. The coefficient-of-variation-based method for generating ETC matrices.

quadrants of Section 4.2, each column in the final ETC matrix should reflect the task het-

erogeneity of the “parent” task vector 
. This condition would not necessarily hold if rows

of the ETC matrix were produced with a high machine heterogeneity from a task vector of

low heterogeneity. This is because a given column may be formed from widely different

execution time values from different rows, and may therefore show high heterogeneity as

opposed to the intended low heterogeneity. One solution is to take transpose of a HiLo

matrix to produce a LoHi one, provided � � �. Otherwise, the transposition can be built

into the procedure as shown in Figure 4.7.

The procedure in Figure 4.7 is very similar to the one in Figure 4.6. The input parameter

����� is replaced with �����. Here, first a “machine vector,” � (with an average value of

�����) is produced. Each element of this “parent” machine vector is then used to generate

one low heterogeneity column of the ETC matrix, such that the high machine heterogeneity

present in � is reflected in all rows.

Tables 4.6 through 4.11 show some sample ETC matrices generated using the

coefficient-of-variation-based method. Tables 4.6 and 4.7 both show HiLo ETC matri-

ces. In both tables, the spread of the execution time values in columns is higher than that in

rows. ETC matrix in Table 4.7 has a higher task heterogeneity (higher �����) than the ETC
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(1) ����� � �������
�; ����� � �������

�; ����� � �����������

(2) for � from 0 to (�� �)
(3) �
�� � �������� �����	

/* �
�� will be used as mean of �-th column of ETC matrix */
(4) �����
�� � �
�������� /* scale parameter for �-th column */
(5) for � from 0 to (�� �)
(6) �
�� �� � �������� �����
��	 /* �-th column */
(7) endfor
(8) endfor

Fig. 4.7. The coefficient-of-variation-based method for generating LoHi ETC matrices.

matrix in Table 4.6. This can be seen in a higher spread in the columns of matrix in Table

4.7 than that in Table 4.6.

Tables 4.8 and 4.9 show HiHi and LoLo ETC matrices, respectively. Execution times

in Table 4.8 are widely spaced along both rows and columns. Spread of execution times

in Table 4.9 is smaller both along columns and rows, because both ����� and ����� are

smaller.

Tables 4.10 and 4.11 show LoHi ETC matrices. In both tables, the spread of the exe-

cution time values in rows is higher than that in columns. ETC matrix in Table 4.11 has a

higher machine heterogeneity (higher �����) than the ETC matrix in Table 4.10. This can

be seen in a higher spread in the rows of matrix in Table 4.11 than that in Table 4.10.

The procedures given in Figures 4.1 through 4.7 produce the inconsistent ETC matrices.

Consistent ETC matrices can be obtained from the inconsistent ETC matrices generated

above by sorting the execution times for all tasks on all machines. From the inconsistent

ETC matrices generated above, semi-consistent matrices consisting of an 
 � � submatrix

could be generated by sorting the execution times across a random subset of �machines for

each task in a random subset of 
 tasks.

It should be noted from Tables 4.10 and 4.11 that the greater the difference in machine

and task heterogeneities, the higher the degree of consistency in the inconsistent LoHi ETC
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Table 4.6 A HiLo matrix generated by coefficient-of-variation-based method.
����� � ���� ����� � ���

�� �� �� �� �� �� �� �� �� ��	

�� 628 633 748 558 743 684 740 692 593 554
�� 688 712 874 743 854 851 701 701 811 864
�� 965 1029 1087 1020 921 825 1238 934 928 1042
�� 891 866 912 896 776 993 875 999 919 860
�� 1844 1507 1353 1436 1677 1691 1508 1646 1789 1251
�� 1261 1157 1193 1297 1261 1251 1156 1317 1189 1306
�� 850 928 780 1017 761 900 998 838 797 824
�� 1042 1291 1169 1562 1277 1431 1236 1092 1274 1305
�� 1309 1305 1641 1225 1425 1280 1388 1268 1290 1549
��	 881 865 752 893 883 813 892 805 873 915

Table 4.7 A HiLo matrix generated by coefficient-of-variation-based method.
����� � ���� ����� � ���

�� �� �� �� �� �� �� �� �� ��	

�� 377 476 434 486 457 486 431 417 429 428
�� 493 370 400 420 502 472 475 440 483 576
�� 745 646 922 650 791 878 853 791 756 788
�� 542 490 469 559 488 498 509 431 547 542
�� 625 666 618 710 624 615 618 599 522 540
�� 921 785 759 979 865 843 853 870 939 801
�� 677 767 750 720 797 728 941 717 686 870
�� 428 418 394 460 434 427 378 427 447 466
�� 263 289 267 231 243 222 283 257 240 247
��	 1182 1518 1272 1237 1349 1218 1344 1117 1122 1260
��� 1455 1384 1694 1644 1562 1639 1776 1813 1488 1709
��� 3255 2753 3289 3526 2391 2588 3849 3075 3664 3312

matrices. For example, in Table 4.11 all tasks show consistent execution time orderings on

all machines except on the machines that correspond to columns 3 and 4. As mentioned
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Table 4.8 A HiHi matrix generated by coefficient-of-variation-based method.
����� � ���� ����� � ���

�� �� �� �� �� �� �� �� �� ��	

�� 1446 1110 666 883 1663 1458 653 1886 458 1265
�� 1010 588 682 1255 3665 3455 1293 1747 1173 1638
�� 1893 2798 1097 465 2413 1184 2119 1955 1316 2686
�� 1014 1193 275 1010 1023 1282 559 1133 865 2258
�� 170 444 500 408 790 528 232 303 301 480
�� 1454 1106 901 793 1346 703 1215 490 537 1592
�� 579 1041 852 1560 1983 1648 859 683 945 1713
�� 2980 2114 417 3005 2900 3216 421 2854 1425 1631
�� 252 519 196 352 958 355 720 168 668 1017
��	 173 235 273 176 110 127 93 276 390 103
��� 115 74 251 71 107 479 153 138 274 189
��� 305 226 860 554 394 344 68 86 223 120

Table 4.9 A LoLo matrix generated by coefficient-of-variation-based method.
����� � ���� ����� � ���

�� �� �� �� �� �� �� �� �� ��	

�� 985 1043 945 835 830 1087 1009 891 1066 1075
�� 963 962 910 918 1078 1091 881 980 1009 981
�� 782 837 968 960 790 800 947 1007 1115 845
�� 999 953 892 986 958 1006 1039 1072 1090 1030
�� 971 972 913 1030 891 873 898 994 1086 1122
�� 1155 1065 800 1247 980 1103 1228 1062 1011 1005
�� 1007 1191 964 860 1034 896 1185 932 1035 1019
�� 1088 864 972 984 736 950 944 994 970 894
�� 878 967 954 917 942 978 1046 1134 985 1032
��	 1210 1120 1043 1093 1386 1097 1202 1004 1185 1226
��� 910 958 1046 1062 952 1054 1020 1175 850 1060
��� 930 935 908 1155 991 997 828 1062 886 831



- 25 -

Table 4.10 A LoHi matrix generated by coefficient-of-variation-based method.
����� � ���� ����� � ���

�� �� �� �� �� �� �� �� �� ��	

�� 1679 876 1332 716 1186 1860 662 833 534 804
�� 1767 766 1327 711 957 2061 625 626 642 800
�� 1870 861 1411 932 1065 1562 625 976 556 842
�� 1861 817 1218 865 1096 1660 587 767 736 822
�� 1768 850 1465 764 1066 1585 663 863 579 757
�� 1951 807 1177 914 939 1483 573 961 643 712
�� 1312 697 1304 921 1005 1639 562 831 633 784
�� 1665 849 1414 795 1162 1593 577 791 709 774
�� 1618 753 1283 794 1153 1673 639 787 563 744
��	 1576 964 1373 752 950 1726 699 836 633 764
��� 1693 742 1454 758 961 1781 721 988 641 793
��� 1863 823 1317 890 1137 1812 704 800 479 848

Table 4.11 A LoHi matrix generated by coefficient-of-variation-based method.
����� � ���� ����� � ���

�� �� �� �� �� �� �� �� �� ��	

�� 4784 326 1620 1307 3301 10 103 4449 228 40
�� 4315 276 1291 1863 3712 11 91 5255 200 47
�� 6278 269 1493 1181 3186 12 93 4604 235 46
�� 4945 294 1629 1429 2894 14 87 4724 231 45
�� 5276 321 1532 1516 2679 12 102 4621 205 46
�� 4946 293 1467 1609 2661 10 96 3991 255 39
�� 4802 327 1317 1668 2982 10 90 5090 252 42
�� 5381 365 1698 1384 3668 12 99 5133 242 38
�� 5011 255 1491 1386 3061 10 94 3739 216 42
��	 5228 296 1489 1515 3632 12 107 4682 203 38
��� 5367 319 1332 1363 3393 12 72 4769 221 43
��� 4621 258 1473 1501 3124 12 96 4091 199 44



- 26 -

in Section 4.1, these degrees and classes of mixed-machine heterogeneity can be used to

characterize HC environments.
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CHAPTER 5

CLASSIFYING MAPPING HEURISTICS

5.1 Overview

As mentioned in Chapter 1, in general, finding optimal solutions for the mapping

problem and the scheduling of inter-machine communications in HC environments is NP-

complete [16], requiring the development of near-optimal heuristic techniques. In recen-

t years, numerous different types of mapping heuristics have been developed (e.g., see

[1, 15, 19, 47, 37]). However, selecting a particular heuristic to use in a certain practical

scenario remains a difficult problem. One of the reasons for this difficulty is that when one

heuristic is presented and evaluated in the literature, typically, different assumptions are

made about the underlying target platform than those used for earlier heuristics (e.g., the

degree to which the capabilities of machines differ in the HC suite), making comparisons

problematic. Similarly, different assumptions about application models complicate com-

parisons (e.g, the variation among average task execution times). Moreover, the mapping

heuristics themselves usually have different characteristics (e.g., different optimization cri-

teria, different execution times). Therefore, a fair comparison of various heuristics is a

challenging problem.

These comparison problems are compounded by the fact that there exist no standard set

of application benchmarks or target platforms for HC environments. Motivated by these

difficulties, a new taxonomy for classifying mapping heuristics for HC environments is

proposed. The Purdue HC Taxonomy is defined in three major parts: (1) the models used

for applications and communication requests, (2) the models used for target platforms,

This chapter builds on and enhances a conference paper [6].
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and (3) the characteristics of mapping heuristics. This new taxonomy builds on previous

taxonomies (e.g., [9, 12, 13, 28]).

Before presenting the proposed taxonomy, previous taxonomies from the fields of

distributed computing and HC are reviewed below. Then the Purdue HC Taxonomy for

mapping heuristics is defined. Finally, the benefits and possible uses of this new taxonomy

are examined.

The research in this chapter was supported partly by the MSHN project and partly

by the DARPA/ISO BADD (Battlefield Awareness and Data Dissemination) Program. In

the BADD Program, communications from a large number of heterogeneous information

sources (e.g., databases, sensors) to a large number of heterogeneous destinations (e.g.,

warfighters’ laptops, proxy servers) must be scheduled over a set of heterogeneous net-

works [53]. Thus, most of this taxonomy pertains to this communication requests environ-

ment also. In general, an application task mentioned in this chapter may correspond to a

communication request.

5.2 Previous Taxonomies

Taxonomies related in various degrees to this work have appeared in the literature. In

this section, overviews of three related taxonomy studies are given.

A taxonomy classifying scheduling techniques used in general-purpose distributed

computing systems is presented in [9]. The classification of target platforms and application

characteristics was outside the scope of that study. The taxonomy in [9] does combine well-

defined hierarchical characteristics with more general flat characteristics to differentiate a

wide range of scheduling techniques. Several examples of different scheduling techniques

from the published literature are also given, with each classified by the taxonomy. In HC

systems, however, scheduling is only half of the mapping problem. The matching of tasks

to machines also greatly affects execution schedules and system performance. Therefore,



- 29 -

the taxonomy proposed in this research also includes categories for platform character-

istics and application characteristics, both of which influence matching (and scheduling)

decisions.

Several different taxonomies are presented in [13]. The first is the ��� taxonomy,

which classifies all computer systems into one of four categories, based on execution

mode and machine model [12]. The taxonomy proposed here assumes heterogeneous sys-

tems from either the ���� (single execution mode, multiple machine models) or the

���� (multiple execution modes, multiple machine models) categories. A “modest-

ly extended” version of the taxonomy from [9] is also presented in [13]. The modified

taxonomy introduces new descriptors and is applied to heterogeneous resource allocation

techniques. Target platform and application properties were not classified as part of the

study (except for considering different parallelism characteristics of applications).

A taxonomy for comparing heterogeneous subtask matching methodologies is included

in [28]. The taxonomy focuses on static subtask matching approaches, and classifies several

specific examples of optimal and sub-optimal techniques. This is a single taxonomy, with-

out the target platform and application parts of the Purdue HC Taxonomy presented in the

next section. However, the “optimal-restricted” classification in [28] includes algorithms

that place restrictions on the underlying program and/or multicomputer system.

The Purdue HC Taxonomy uses these studies as a foundation, and extends their con-

cepts to the specific HC mapping problem domain being considered. Relevant ideas from

these studies are incorporated into the unique structure of the three-part taxonomy de-

scribed in the next section, allowing for more detailed classifications of HC mapping

heuristics.

5.3 Proposed Taxonomy

It is assumed that a mixed-machine HC system is composed of different machines, with

possibly multiple execution models (as in���� classification [13]). The system is de-

fined to be heterogeneous if any one or more of the following characteristics varies among
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machines enough to result in different execution performance among those machines: pro-

cessor type, processor speed, mode of computation, memory size, number of processors

(within parallel machines), inter-processor network (within parallel machines), etc.

The new Purdue HC Taxonomy for describing mapping heuristics for mixed-machine

HC systems is defined by three major components: (1) application model and commu-

nication requests characterization, (2) platform model characterization, and (3) mapping

strategy characterization. Earlier taxonomies have focused only on the third item above.

To properly analyze and compare mapping heuristics for current and future HC environ-

ments, information about both the target platform and the application being executed is

needed.

Thus, the Purdue HC Taxonomy classifies all three components of an HC environmen-

t, and attempts to qualitatively define aspects of the environment that can affect mapping

decisions and performance. (Doing this quantitatively in a thorough, rigorous, complete,

and “standard” manner is a long term goal of the HC field.) This taxonomy is based on

existing mapping heuristics found in the literature, as well as previous research and expe-

rience within the field of HC. Each category can, of course, be investigated in more detail.

Because research on mapping heuristics is an active and growing field, it is assumed that

this taxonomy will be refined and expanded over time to serve as an evolving standard for

describing HC mapping heuristics and their assumed environments.

5.3.1 Application Model Characterization

The first category of the taxonomy defines the models used for the applications to be

executed on the HC system and for the communications to be scheduled on the inter-

machine network. The applications are not classified by functionality, but rather by the

traits that define application computational and communication characteristics that may

impact mapping decisions and relative mapper performance. Furthermore, the taxonomy

includes application traits that may not be realistic, but do correspond to assumptions a giv-

en researcher may have made when designing and analyzing mapping heuristics. Typically,
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such assumptions are made to simplify the mapping problem in some way. For example,

many researchers assume a given subtask must receive all of its input data from other sub-

tasks before it can begin executing, when in reality the subtask may be able to begin with

only a subset of data. The goal of the taxonomy is to reflect the environment assumed by

the mapping heuristic, so that the application model can capture any assumptions made

(even if they are unrealistic). The defining traits of such an application model are given

below.

application type: What type of applications are to be mapped? If all tasks are inde-

pendent, meta-task mapping is being performed. If there is a single task decomposed into

subtasks (recall subtasks have dependencies), it is subtask mapping. One can also have the

situation where a meta-task has independent tasks, but some of the tasks have subtasks. In

this case, both meta-task and subtask mappings would be necessary. Some of the items

mentioned later in this taxonomy apply only to subtask mapping. They will be indicated

with the letter “S” written next to them.

communication patterns (S): Does the application have any particular data commu-

nication pattern with respect to the source and destination subtasks for each data item to

be transferred? Knowledge of data communication pattern can help mapper in reducing

communication costs by mapping communicating tasks closer.

data provision and utilization times (S): Can a source subtask release data to the con-

sumers before it completes? Can a consumer subtask begin execution before receiving all

of its input data? (As an example, the clustering non-uniform directed graph heuristic in

[14] assumes that a subtask cannot send data to other waiting subtasks until it completely

finishes executing.) The time at which input data needed by a subtask or output data gener-

ated by a subtask can be utilized may vary in relation to subtask start and finish times, and

can help mapper overlap the execution of inter-dependent subtasks.

data location: Do tasks require data from special servers? Are data retrieval and storage

times considered?
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application size: For how many tasks (or subtasks) was the heuristic evaluated? The

number of tasks (or subtasks) for which a given heuristic is evaluated can impact the per-

formance of the heuristic for a given metric. For example, it is shown in [34] that a certain

class of dynamic heuristics performs better than another class for larger meta-tasks (i.e.,

ones with a larger number of tasks in it), but not smaller meta-tasks.

temporal distribution: Is the complete set of tasks of a meta-task (or subtasks of a task)

to be mapped known a priori (static applications), or do the tasks (or subtasks) arrive in a

real-time, non-deterministic manner (dynamic applications), or is it a combination of the

two?

deadlines: Do the applications have deadlines? This property could be further refined

into soft and firm deadlines, if required. Applications completed by a soft deadline provide

the most valuable results. An application that completes after a soft deadline but before a

firm deadline is still able to provide some useful data. After a firm deadline has passed,

data from the application is useless.

priorities: Do the applications have priorities? Environments that would require priori-

ties include military systems and machines where time-sharing must be enforced. Priorities

are generally assigned by the user (within some allowed range), but the relative weightings

given to each priority are usually determined by another party (e.g., a system administrator).

Priorities and their relative weightings are required if the mapping strategy is preemptive

(defined in the mapping strategy characterization).

multiple versions: Do the applications have multiple versions that could be executed?

For example, an application that requires an FFT might be able to perform the FFT with

either of two different procedures that have different precisions, different execution times,

and different resource requirements. What are the relative “values” of the different versions

to the user?

QoS requirements: Do certain applications specify any Quality of Service (QoS) re-

quirements? Most QoS requirements, like security, can affect mapping decisions (e.g., not

mapping a particular task onto an insecure machine).
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interactivity: Are applications user-interactive (i.e., do they depend on real-time user

input), and thus must be executed on machines the user has access/clearance for?

task (or subtask) heterogeneity: For each machine in the HC suite, how greatly and

with what properties (e.g., probability distribution) do the execution times of the different

tasks in the meta-task (or subtasks in the task) vary?

task profiling: Has task profiling been done? Is the task profile available to the mapping

heuristic. Task profiling specifies the types of computations present in an application based

on the code for the task (or subtask) and the data to be processed [22, 36]. This informa-

tion may be used by the mapping heuristic, in conjunction with analytical benchmarking

(defined in the platform model characterization), to estimate task (or subtask) execution

time.

execution time representation: How are the estimated execution times of task (or sub-

tasks) modeled? Most mapping techniques require an estimate of the execution time of

each task (or subtask) on each machine. The two choices most commonly used for making

these estimates from historic or direct information (e.g., that from task profiling or applica-

tion writer’s advice) are deterministic and distribution modeling. Deterministic modeling

uses a fixed (or expected) value [55], e.g., the average of ten previous executions of an

application. Distribution modeling statistically processes historic knowledge to arrive at

a probability distribution for application execution times. This probability distribution is

then used to make mapping decisions [33].

5.3.2 Platform Model Characterization

The second category of the taxonomy defines the models used for target platforms avail-

able within HC systems. The target platform traits listed are those that may impact map-

ping decisions, and relative mapper performance. (The target platform is defined by the

hardware, network properties, and software that constitute the HC suite.) Several existing

heuristics make simplifying (but unrealistic) assumptions about their target platforms (e.g.,

[49] assumes an infinite number of machines are available). Therefore, this taxonomy is
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not limited to a set of realistic target platforms. Instead, a framework for classifying the

models used for target platforms is provided below. As mentioned in 5.3.1, this is done

so that the taxonomy reflects the environment assumed by a mapping heuristic (even if the

environment is unrealistic).

number of machines: Is the number of machines finite or infinite? Is the number of

machines fixed or variable (e.g., new machines can come on-line)? Furthermore, a given

heuristic with a finite, fixed number of machines may treat this number as a parameter that

can be changed from one mapping to another.

system control: Does the mapping strategy control and allocate all resources in the en-

vironment (dedicated), or are external users also consuming resources (shared)?

task compatibility: Is each machine in the environment able to perform each applica-

tion, or, for some applications, are special capabilities that are only available on certain

machines required? These capabilities could involve issues such as database software, I/O

devices, memory space, and security.

machine heterogeneity and architecture: For each task (or subtask), how greatly and

with what properties (e.g., probability distribution) do the execution times vary across

different machines in the HC suite? For each machine, various architectural features that

can impact performance must be considered, e.g., processor type, processor speed, external

I/O bandwidth, mode of computation (e.g., SIMD, MIMD, vector), memory size, number

of processors (within parallel machines), and inter-processor network (within parallel ma-

chines).

code and data access and storage times: How long will it take each machine to access

the code and input data it needs to execute a given task? How long will it take each machine

to store any resulting output data for a given task? This applies to subtask I/O that is not

from/to another subtask, and applies to meta-tasks.

interconnection network (S): What are the various properties of the inter-machine net-

work? Many network characteristics can affect mapping decisions and system perfor-

mance, including the following: bandwidth, ability to perform concurrent data transfers,
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latency, switching control, and topology. Most of these network properties are also func-

tions of the source and destination machines. (Volumes of literature already exist on the

topic of interconnection networks, therefore, they are not classified here. A general inter-

connection network taxonomy can be found in [11].)

number of connections (S): How many connections does each machine have to the in-

terconnection network structure or directly to other machines?

concurrent send/receives (S): Can each machine perform concurrent sends and re-

ceives of data to other machines (assuming enough network connections)?

overlapped computation/communication (S): Can machines overlap computation

and inter-machine communication?

communication time (S): How much time does it take to send data from any one ma-

chine to any other? This may be expressed as a function of path establishment time and

bandwidth.

analytical benchmarks: Have the machines in the HC suite been evaluated on analyt-

ical benchmarks? Are the benchmarking results available to the mapping heuristic? An-

alytical benchmarking provides a measure of how well each available machine in the HC

platform performs on each given type of computation [22, 36]. This information may be

used by the mapping heuristic, in conjunction with task profiling (see the application model

characterization), to estimate task (or subtask) execution time.

migration: Do the machines support the migration of tasks (or subtask)? Migration

affects the communication patterns among subtasks, and may reduce the advantage of any

mapping decision based on pre-migration communication patterns.

5.3.3 Mapping Strategy Characterization

The third category of the Purdue HC Taxonomy defines the characteristics used to de-

scribe the mapping strategies. Because the general HC mapping problem is NP-complete,

it is assumed that the mapping strategies being classified are only near-optimal techniques.
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support for application model: Can the mapping strategy use information about a giv-

en trait of the application (as modeled in Section 5.3.1 above)? For example, a mapping

strategy that cannot make use of the fact that a given task has multiple versions may be

outperformed by the one that does use this information in making mapping decisions.

support for platform model: Can the mapping strategy use information about a given

trait of the platform (as modeled in Section 5.3.2 above)? For example, can the mapping

strategy take advantage of any support that the platform provides for migration of tasks?

control location: Is the mapping strategy centralized or distributed? Distributed strate-

gies can further be classified as cooperative or non-cooperative (independent) approaches.

execution location: Can a machine within the suite be used to execute the mapping

strategy, or is an external machine required?

preemptive: What assumptions does the mapping strategy make about task preemption

(e.g., can tasks be stopped and restarted)? Preemptive mapping strategies can interrupt ap-

plications that have already begun execution to free resources for more important applica-

tions. Applications that were interrupted may be reassigned (i.e., migrated), or may resume

execution upon completion of the more important application. Preemptive techniques must

be dynamic by definition. Application “importance” must be specified by some priority

assignment and weighting scheme, as already discussed in 5.3.1.

fault tolerance: Is fault tolerance considered by the mapping strategy? This may take

several forms, such as assigning applications to machines that can perform checkpointing,

or executing multiple, redundant copies of an application.

objective function: What is the quantity that the mapping strategy is trying to optimize?

This varies widely among strategies, and can make some approaches inappropriate in some

situations. The objective function can be as simple as the total execution time for a meta-

task, or a more complex function that includes priorities, deadlines, QoS, etc. [31].

application execution time: When making mapping decisions for each machine/task

(or subtask) pair, does the mapper use estimated expected execution times or probability

distribution’s execution time?
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dynamic/static: Is the mapping technique dynamic or static? Dynamic mapping tech-

niques operate in real-time (as tasks arrive for immediate execution), and make use of

real-time information. Dynamic techniques require inputs from the environment, and may

not have a definite end. For example, dynamic techniques may not know the entire set of

tasks to be mapped when the technique begins executing; new tasks may arrive at random

intervals. Similarly, new machines may be added to the suite. If a dynamic technique has

feedback, applications may be reassigned because of the loss of a machine, or application

execution taking significantly longer than expected. In contrast, static mapping techniques

take a fixed set of applications, a fixed set of machines, and a fixed set of application and

machine attributes as inputs and generate a single, fixed mapping. Static mapping tech-

niques have a well-defined beginning and end, and each resulting mapping is not modified

due to changes in the HC environment or feedback. These techniques are used to plan the

execution of a set of tasks for a future time period (e.g., the production tasks to execute on

the following day). Some of the items mentioned later in this section apply only to dynamic

mapping. They will be indicated with the letter “D” written next to them.

dynamic remapping (D): Does the mapping heuristic require an initial mapping, which

it then enhances? For example, a dynamic heuristic with feedback can remap a previous

static mapping [37].

on-line/batch (D): Does the dynamic mapping heuristic map a task as soon as it arrives

(on-line dynamic mapping) or does it collects arriving tasks into a small batch and then

map (batch dynamic mapping)? Batch and on-line dynamic mapping techniques perform

differently under different environmental conditions e.g., task arrival rate [34].

data forwarding (S): Is data forwarding considered during mapping [52]? That is,

could a subtask executing on a machine receive data from an intermediate machine sooner

than from the original source?

duplication (S): Can a given subtask be duplicated and executed on multiple machines

to reduce communication overhead?
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predictability of mapper execution times: Is the execution time of the mapping

strategy predictable? For some heuristics, the execution time of the heuristic can accurate-

ly be predicted, e.g., when the mapping heuristic performs a fixed, predetermined number

of steps with a known amount of computation in each step before arriving at a mapping

(e.g., greedy approaches [1]). In contrast, some heuristics are iterative in the sense that the

mapping is continually refined until some stopping criteria is met, resulting in a number of

steps that is not known a priori, or in a known number of steps with an unknown amount

of work in each step (e.g., genetic algorithms [49, 55]). The execution times of different

mapping strategies vary greatly, and are an important property during the comparison or

selection of mapping techniques. For example, it is shown in [34] that choice between two

mapping heuristics whose performance is comparable may be made based on the heuristics’

execution time.

feedback: Does the mapping strategy incorporate real-time feedback from the platform

(e.g., machine availability times) or applications (e.g., actual task execution times) into its

decisions? Strategies that utilize feedback are dynamic, but not all dynamic strategies have

feedback.

5.4 Sample Taxonomical Heuristic Descriptions

This section describes nine heuristics from the literature in terms of the Purdue HC

Taxonomy. The heuristics have been examined with respect to each of the three parts of the

taxonomy, i.e., the application model, platform model, and mapping strategy characteriza-

tion.

The �-Percent Best and the Switching Algorithm [34]

Application Model The �-Percent Best and the Switching Algorithm are meta-task map-

ping heuristics. Each of the two heuristics has been evaluated for a maximum meta-

task size of 2000. Temporal distribution of the tasks is not known a priori. Tasks
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have no deadlines, priorities, versions, or QoS specifications. The tasks are not in-

teractive. Task execution times are modeled by sampling a truncated Gaussian dis-

tribution whose mean is set to the expected execution time estimate as found from

the “expected time to compute” matrix (see Chapter 4). The variance of the Gaus-

sian distribution is set to 300% of its mean [2]. The meta-task heterogeneity is set to

an arbitrarily high value; the estimated expected execution times of a given task on

the machines in HC system are sampled from a uniform random number distribution

with an arbitrarily high range as a measure of high meta-task heterogeneity.

Platform Model Each of the two heuristics is simulated assuming a system of 20 ma-

chines. The system is dedicated, i.e., the resources in the system are not being used

by external users. Each machine in the system is compatible to all tasks, i.e., each

machine can run any task that is submitted to the system. Machine heterogeneity is

modeled. No particular interconnection network is assumed. Analytical benchmark-

ing of machines not provided. Tasks are not allowed to migrate to a different machine

during execution.

Mapping Heuristic Model Each of the two mapping heuristics is centralized, is located

on an external machine, is non-preemptive, does not consider fault tolerance, and

has the overall completion time of the meta-task as the objective function. Each of

the two mapping heuristics is dynamic, does not require an initial static mapping,

maps a task as soon as it arrives, does not remap, does not allow task duplication,

has a predictable worst case execution time, and does incorporate feedback from the

platform.

The Sufferage and the Max-min [34]

Application Model The Sufferage and the Max-min heuristics are meta-task mapping

heuristics. Each of the two heuristics has been evaluated for a maximum meta-task

size of 2000. Temporal distribution of the tasks is not known a priori. Tasks have
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no deadlines, priorities, versions, or QoS specifications. The tasks are not interac-

tive. Task execution times are modeled by sampling a truncated Gaussian distribu-

tion whose mean is set to the expected execution time estimate as found from the

“expected time to compute” matrix (see Chapter 4). The variance of the Gaussian

distribution is set to 300% of its mean [2]. The meta-task heterogeneity is set to

an arbitrarily high value; the estimated expected execution times of a given task on

the machines in HC system are sampled from a uniform random number distribution

with an arbitrarily high range as a measure of high meta-task heterogeneity.

Platform Model Each of the two heuristics is simulated assuming a system of 20 ma-

chines. The system is dedicated, i.e., the resources in the system are not being used

by external users. Each machine in the system is compatible to all tasks, i.e., each

machine can run any task that is submitted to the system. Machine heterogeneity is

modeled. No particular interconnection network is assumed. Analytical benchmark-

ing of machines not provided. Tasks are not allowed to migrate to a different machine

during execution.

Mapping Heuristic Model Each of the two mapping heuristics is centralized, is located

on an external machine, is non-preemptive, does not consider fault tolerance, and has

the overall completion time of the meta-task as the objective function. Each of the

two mapping heuristics is dynamic, does not require an initial static mapping, maps

task in batches, remaps tasks, does not allow task duplication, has a predictable worst

case execution time, and does incorporate feedback from the platform.

Genetic Algorithm [55]

Application Model The genetic algorithm presented in [55] is a subtask mapping heuris-

tic. Data communication pattern is assumed to have a single source subtask and

multiple destination subtasks. Data can not be provided to the consuming subtasks
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before the source subtask finishes execution. A consumer subtask can begin execu-

tion only after receiving all of its input data. Data retrieval and storage times are

not considered in this heuristic. The heuristic has been evaluated for a maximum

of 100 subtasks. Temporal distribution of the subtasks is known a priori. Subtasks

have no deadlines, priorities, versions, or QoS specifications. The subtasks are not

interactive. The subtask execution times are modeled by sampling a uniform random

number distribution with an arbitrary range of 1 to 1000. The subtask heterogeneity

is modeled.

Platform Model The genetic algorithm presented in [55] is simulated assuming a system

of 20 machines. The system is dedicated, i.e., the resources in the system are not

being used by external users. Each machine in the system is compatible to all tasks,

i.e., each machine can run any task that is submitted to the system. Machine het-

erogeneity is modeled. The study assumes a communication system modeled after a

HiPPI LAN with a central crossbar switch. Each machine has two links to the cen-

tral crossbar switch. Concurrent send and receive of data assumed. Communication

time between two machines is given by the data item length divided by bandwidth

of the link. Analytical benchmarking of machines not provided. Subtasks are not

allowed to migrate to a different machine during execution.

Mapping Heuristic Model The mapping heuristic is centralized, is located on an external

machine, is non-preemptive, does not consider fault tolerance, and has the overall

completion time of the meta-task as the objective function. The mapper does not

handle the execution time modeling. The mapping heuristic is static, allows data

forwarding, does not allow subtask duplication, does not have a predictable worst

case execution time, and does not incorporate feedback from the platform.
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A-Schedule, B-Schedule, C-Schedule, and D-Schedule [25]

Application Model A-Schedule, B-Schedule, C-Schedule, and D-Schedule are all meta-

task mapping heuristics. Data retrieval and storage times are not considered in these

heuristics. The heuristics have not been evaluated for any particular number of tasks.

No simulations were performed. Temporal distribution of the tasks is known a priori.

Tasks have no deadlines, priorities, versions, or QoS specifications. The tasks are not

interactive. The task heterogeneity is modeled.

Platform Model The system is dedicated, i.e., the resources in the system are not being

used by external users. Each machine in the system is compatible to all tasks, i.e.,

each machine can run any task that is submitted to the system. Machine heterogene-

ity is modeled. Analytical benchmarking of machines not provided. Tasks are not

allowed to migrate to a different machine during execution.

Mapping Heuristic Model The mapping heuristic is centralized, is located on an external

machine, is non-preemptive, does not consider fault tolerance, and has the overall

completion time of the meta-task as the objective function. The mapping heuristic is

static, does have a predictable worst case execution time, and does not incorporate

feedback from the platform.

5.5 Summary

The Purdue HC Taxonomy can be beneficial to researchers in several ways. It can allow

more meaningful comparisons among different mapping approaches. It can help extend

existing mapping work, and recognize important areas of research by facilitating under-

standing of the relationships that exist among previous efforts. The three-part classification

system provided allows HC researchers to describe mapping heuristics more thoroughly,

and to see design and environment alternatives that they might not have otherwise consid-

ered during the development of new heuristics. A researcher can also use the taxonomy to

find the mapping heuristics that use similar target platform and application models. The
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mapping heuristics found for similar models can then possibly be adapted or developed

further to better solve the mapping problem that is being considered. The taxonomy can

also be used to specify the requirements and capabilities of a resource management system,

such as MSHN. In the future, this taxonomy could focus research towards the development

of a standard set of benchmarks for HC environments. It is expected, as research progress-

es, that the Purdue HC Taxonomy will be an evolving standard, that is refined and extended

to incorporate new ideas and findings.
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CHAPTER 6

DYNAMIC HEURISTICS FOR MAPPING META-TASKS IN HC
SYSTEMS

6.1 Introduction

HC is an important technique for efficiently solving collections of computationally in-

tensive problems. As mentioned in Chapter 1, the applicability and strength of HC systems

are derived from their ability to match computing needs to appropriate resources. HC sys-

tems have RMSs (i.e., resource management systems) to govern the execution of tasks that

arrive for service. This chapter describes and compares eight heuristics that can be used in

such an RMS for dynamically assigning independent tasks to machines.

In a general HC system, schemes are necessary to match tasks to machines, and to

schedule the tasks assigned to each machine [6]. Recall from Chapter 1 that the process

of matching and scheduling tasks is referred to as mapping. Dynamic methods to do this

operate on-line, i.e., as tasks arrive. This is in contrast to static techniques, where the

complete set of tasks to be mapped is known a priori, the mapping is done off-line, i.e.,

prior to the execution of any of the tasks, and more time is available to compute the mapping

(e.g., [7, 55]).

In the HC environment considered here, the tasks are assumed to be independent, i.e.,

no communications between the tasks are needed. This scenario is likely to be present, for

instance, when many independent users submit their jobs to a collection of shared compu-

tational resources. A dynamic scheme is needed because the arrival times of the tasks may

be random, and some machines in the suite may go off-line and new machines may come

on-line. The dynamic mapping heuristics investigated in this study are non-preemptive,

and assume that the tasks have no deadlines or priorities associated with them.
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The mapping heuristics can be grouped into two categories: immediate mode and batch

mode heuristics. In the immediate mode, a task is mapped onto a machine as soon as it

arrives at the mapper. In the batch mode, tasks are not mapped onto the machines as they

arrive; instead they are collected into a set that is examined for mapping at prescheduled

times called mapping events. As defined in Chapter 1, the independent set of tasks that

is considered for mapping at the mapping events is called a meta-task. A meta-task can

include newly arrived tasks (i.e., the ones arriving after the last mapping event) and the ones

that were mapped in earlier mapping events but did not begin execution. While immediate

mode heuristics consider a task for mapping only once, batch mode heuristics consider a

task for mapping at each mapping event until the task begins execution.

The trade-offs among and between immediate and batch mode heuristics are studied

experimentally. Mapping independent tasks onto an HC suite is a well-known NP-complete

problem if throughput is the optimization criterion [25]. For the heuristics discussed in this

chapter, maximization of throughput is the primary objective, because this performance

measure is the most common one in production oriented environments.

Three new heuristics, one for batch and two for immediate, are introduced as part of

this research. Simulation studies are performed to compare these heuristics with a number

of existing ones. In total, five immediate mode heuristics and three batch heuristics are ex-

amined. The immediate mode heuristics consider, to varying degrees and in different ways,

task affinity for different machines and machine ready times. The batch mode heuristics

consider these factors, as well as aging of tasks waiting to execute. The heuristics devel-

oped here, or their derivatives, may be included in the Scheduling Advisor component of

the MSHN prototype.

Section 6.2 describes some related work. In Section 6.3, background terms and opti-

mization criteria are defined. Section 6.4 discusses the mapping approaches studied here.

Section 6.5 gives the simulation procedure, and presents the simulation results.
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6.2 Related Work

Related work in literature was examined to select a set of heuristics appropriate for the

HC environment considered here, and then perform comparative studies. This section is a

sampling of related literature, and is not meant to be exhaustive.

In the literature, mapping tasks onto machines is often referred to as scheduling. Several

researchers have worked on the dynamic mapping problem from areas including job shop

scheduling and distributed computer systems (e.g., [26, 32, 44, 51]).

The heuristics presented in [25] are concerned with mapping independent tasks onto

heterogeneous machines such that the completion time of the last finishing task is mini-

mized. The problem is recognized as NP-complete, and worst case performance bounds

are obtained for the heuristics. Some of these heuristics are designed for a general HC

environment, while the rest target either a heterogeneous two machine system or a gen-

eral homogeneous system. Of the heuristics designed for a general HC environment, the

A-schedule, B-schedule, and C-schedule heuristics are simply variations of the minimum

completion time heuristic used here. The Min-min heuristic that is used here as a bench-

mark for batch mode mapping is based on the D-schedule, and is also one of the heuristics

implemented in SmartNet [19].

The scheme in [26] is representative of techniques for mapping communicating sub-

tasks to an HC suite, considering data dependency graphs and communication times be-

tween machines. Thus, an environment very different than the set of independent tasks

considered here is used. Hence, the heuristics developed for that different environment are

not appropriate for the HC environment considered here.

Two dynamic mapping approaches, one using a distributed policy and the other using

a centralized policy, are developed in [32]. Both of these approaches are very similar to

the minimum completion time heuristic (used as a benchmark in the studies here) except

that they incorporate communication times in calculating the minimum completion time

for a task. For the distributed approach, the mapper at a given node considers the local
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machine and the � highest communication bandwidth neighbors to map the tasks in the

local queue. Therefore, the mapper based on the distributed strategy assigns a task to the

best machine among the � � � machines. The simulation results provided in [32] show

that the heuristic with the centralized policy always performs better than the distributed

heuristic. Hence, the minimum completion time heuristic used here represents the better of

the two heuristics presented in [32].

A survey of dynamic scheduling heuristics for job-shop environments is provided in

[51]. It classifies the dynamic scheduling algorithms into three approaches: knowledge-

based approach, conventional approach, and distributed problem solving approach. The

heuristics with a knowledge-based approach take a long time to execute, and hence are not

suitable for the particular dynamic environment considered here. The classes of heuristics

grouped under the conventional and distributed problem solving approaches are similar to

the minimum completion time heuristic considered here. However, the problem domains

considered in [51] involve precedence constraints among the tasks, priorities, or deadlines,

and thus differ from the domain here.

In distributed computer systems, load balancing schemes have been a popular strategy

for mapping tasks onto machines (e.g., [39, 44]). In [39], the performance characteristics

of simple load balancing heuristics for HC distributed systems are studied. The heuristics

presented in [39] do not consider task execution times when making their decisions. In [44],

a survey of dynamic scheduling heuristics for distributed computing systems is provided.

All heuristics, except one, in [44] schedule tasks on different machines using load sharing

techniques, without considering task execution times. (The one heuristic in [44] that does

not use load sharing, employs deadlines to schedule tasks, and therefore falls out of the

problem domain discussed here.) The load balancing heuristic used in this research is

representative of the load balancing techniques in [39] and [44].

SmartNet [19] is an RMS for HC systems that employs various heuristics to map tasks

to machines considering resource and task heterogeneity. In this chapter, some SmartNet
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heuristics appropriate for the HC environment considered here are included in the compar-

ative study (minimum completion time, Min-min, and Max-min).

6.3 Performance Metric

The expected execution time �
� of task �
 on machine �� is defined as the amount of

time taken by �� to execute �
 given �� has no load when �
 is assigned. The time �
�

includes the time to move the �
 code and data from each of their corresponding single

fixed sources to machine �� . The expected completion time �
� of task �
 on machine

�� is defined as the wall-clock time at which �� completes �
 (after having finished any

previously assigned tasks). Let � be the total number of machines in the HC suite. Let �

be the set containing the tasks that will be used in a given test set for evaluating heuristics

in the study. Let the arrival time of the task �
 be 

, and let the time �
 begins execution

be �
. From the above definitions, �
� � �
 � �
� . Let �
 be the completion time for task

�
, and is equal to �
� where machine�� is assigned to execute task �
. The makespan [41]

for the complete schedule is then defined as �
�������
	. Makespan is a measure of the

throughput of the HC system, and does not measure the quality of service imparted to an

individual task.

Recall from Section 6.1, that in immediate mode, the mapper assigns a task to a machine

as soon as the task arrives at the mapper, and in batch mode a set of independent tasks that

need to be mapped at a mapping event is called a meta-task. (In some systems, the term

meta-task is defined in a way that allows inter-task dependencies.) In batch mode, for the

�-th mapping event, the meta-task �
 is mapped at time �
, where � � �. The initial meta-

task, �	, consists of all the tasks that arrived prior to time �	, i.e., �	 � ��� � 
� � �	�.

The meta-task, ��, for � � �, consists of tasks that arrived after the last mapping event

and the tasks that had been mapped, but did not start executing, i.e., �� � ��� � ���� �

� � ��� 	 ��� � 
� � ����� �� � ���. Let 
�� be the completion time of task �� if it

is the only task that is executing on the system. The sharing penalty (��) for the task ��

is defined as ��� � 
��	. The average sharing penalty for the tasks in the set � is given
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by 

�

����
����� � �. The average sharing penalty for a set of tasks mapped by a given

heuristic is an indication of the heuristic’s ability to minimize the effects of contention

among different tasks in the set. It indicates quality of service provided to an individual

task, as gauged by the wait incurred by the task before it begins and the time to perform the

actual computation.

6.4 Mapping Heuristics

6.4.1 Overview

In the immediate mode heuristics, each task is considered only once for matching and

scheduling, i.e., the mapping is not changed once it is computed. When the arrival rate is

low enough, machines may be ready to execute a task as soon as it arrives at the mapper.

Therefore, it may be beneficial to use the mapper in the immediate mode so that a task need

not wait until the next mapping event to begin its execution.

In batch mode, the mapper considers a meta-task for matching and scheduling at each

mapping event. This enables the mapping heuristics to possibly make better decisions than

immediate mode heuristics. This is because the batch mode heuristics have the resource

requirement information for a whole meta-task, and know about the actual execution times

of a larger number of tasks (as more tasks might complete while waiting for the mapping

event). When the task arrival rate is high, there will be a sufficient number of tasks to

keep the machines busy in between the mapping events, and while a mapping is being

computed. (It is, however, assumed in this study that the running time of each mapping

heuristic is negligibly small as compared to the average task execution time.)

Both immediate and batch mode heuristics assume that estimates of expected task exe-

cution times on each machine in the HC suite are known (see Section 4.2). These estimates

can be supplied before a task is submitted for execution, or at the time it is submitted.

The ready time of a machine is the earliest wall-clock time that machine is going to be

ready after completing the execution of tasks that are currently assigned to it. Because the

heuristics presented here are dynamic, the expected machine ready times are based on a
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combination of actual task execution times (for tasks that have completed execution on that

machine) and estimated expected task execution times (for tasks assigned to that machine

and waiting to execute). It is assumed that each time a task �
 completes on a machine

�� a report is sent to the mapper, and the ready time for �� is updated if necessary. The

experiments presented in Section 6.5 model this situation using simulated actual values for

the execution times of tasks that have already finished their execution.

All heuristics examined here operate in a centralized fashion and map tasks onto a ded-

icated suite of machines; i.e., the mapper controls the execution of all jobs on all machines

in the suite. It is assumed that each mapping heuristic is being run on a separate machine.

(While all heuristics studied here are functioning dynamically, the use of some of these

heuristics in a static environment is discussed in [7], and is also summarized in Chapter 7

as related work.)

6.4.2 Immediate mode mapping heuristics

Five immediate mode heuristics are described here. These are (i) minimum completion

time, (ii) minimum execution time, (iii) switching algorithm, (iv) �-percent best, and (v)

opportunistic load balancing. Of these five heuristics, switching algorithm and �-percent

best have been proposed as part of the research presented in this thesis.

The minimum completion time (MCT) heuristic assigns each task to the machine that

results in that task’s earliest completion time. This causes some tasks to be assigned to

machines that do not have the minimum execution time for them. The MCT heuristic is

a variant of the fast-greedy heuristic from SmartNet [19]. The MCT heuristic is used as a

benchmark for the immediate mode, i.e., the performance of other heuristics is compared

with that of the MCT heuristic. As a task arrives, all the machines in the HC suite are

examined to determine the machine that gives the earliest completion time for the task.

Therefore, it takes  ��	 time to map a given task.

The minimum execution time (MET) heuristic assigns each task to the machine that

performs that task’s computation in the least amount of execution time (this heuristic is
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also known as limited best assignment (LBA) [1] and user directed assignment (UDA)

[19]). This heuristic, in contrast to MCT, does not consider machine ready times, and can

cause a severe imbalance in load across the machines. The advantages of this method are

that it gives each task to the machine that performs it in the least amount of execution time,

and the heuristic is very simple. The heuristic needs  ��	 time to find the machine that

has the minimum execution time for a task.

The switching algorithm (SA) is motivated by the following observations. The MET

heuristic can potentially create load imbalance across machines by assigning many more

tasks to some machines than to others, whereas the MCT heuristic tries to balance the load

by assigning tasks for earliest completion time. If the tasks are arriving in a random mix, it

is possible to use the MET at the expense of load balance until a given threshold, and then

use the MCT to smooth the load across the machines. The SA heuristic uses the MCT and

MET heuristics in a cyclic fashion depending on the load distribution across the machines.

The purpose is to have a heuristic with the desirable properties of both the MCT and the

MET.

Let the maximum (latest) ready time over all machines in the suite be !���, and the

minimum (earliest) ready time be !�

. Then, the load balance index across the machines

is given by " � !�

�!���. The parameter " can have any value in the interval 
�� ��. If

" is 1.0, then the load is evenly balanced across the machines. If " is 0, then at least one

machine has not yet been assigned a task. Two threshold values, "� (low) and "� (high),

for the ratio " are chosen in 
�� �� such that "� � "�. Initially, the value of " is set to 0.0.

The SA heuristic begins mapping tasks using the MCT heuristic until the value of the load

balance index increases to at least "�. After that point in time, the SA heuristic begins

using the MET heuristic to perform task mapping. This typically causes the load balance

index to decrease. When it decreases to "� or less, the SA heuristic switches back to using

the MCT heuristic for mapping the tasks, and the cycle continues.

As an example of the functioning of the SA with lower and upper limits of 0.6 and 0.9,

respectively, for � � ��1000 and one particular rate of arrival of tasks, the SA switched
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between the MET and the MCT two times (i.e., from the MCT to the MET to the MCT),

assigning 715 tasks using the MCT. For � � ��2000 and the same task arrival rate, the SA

switched five times, using the MCT to assign 1080 tasks. The percentage of tasks assigned

using MCT gets progressively smaller for larger � � �. This is because the larger the

� � �, the larger the number of tasks waiting to execute on a given machine, and therefore,

the larger the ready time of a given machine. This in turn means that an arriving task’s

execution time will impact the machine ready time less, thereby rendering the load balance

index less sensitive to a load-imbalancing assignment.

At each task’s arrival, the SA heuristic determines the load balance index. In the worst

case, this takes  ��	 time. In the next step, the time taken to assign a task to a machine is

of order ��	, whether SA uses the MET to perform the mapping or the MCT. Overall, the

SA heuristic takes  ��	 time irrespective of which heuristic is actually used for mapping

the task.

The �-percent best (KPB) heuristic considers only a subset of machines while mapping

a task. The subset is formed by picking the � � ������	 best machines based on the

execution times for the task, where ����� � � � ���. The task is assigned to a machine

that provides the earliest completion time in the subset. If � � ���, then the KPB heuristic

is reduced to the MCT heuristic. If � � �����, then the KPB heuristic is reduced to

the MET heuristic. A “good” value of � maps a task to a machine only within a subset

formed from computationally superior machines. The purpose is not as much as matching

of the current task to a computationally well-matched machine as it is to avoid putting the

current task onto a machine which might be more suitable for some yet-to-arrive tasks. This

“foresight” about task heterogeneity is missing in the MCT, which might assign a task to a

poorly matched machine for an local marginal improvement in completion time, possibly

depriving some subsequently arriving better matched tasks of that machine, and eventually

leading to a larger makespan as compared to the KPB. It should be noted that while both

the KPB and SA combine elements of the MCT and the MET in their operation, it is only

in the KPB that each task assignment attempts to optimize objectives of the MCT and the
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Table 6.1 Initial ready times of the machines (arbitrary units).

�	 �� ��

75 110 200

MET simultaneously. However, in cases where a fixed subset of machines is not among

the �� best for any of the tasks, the KPB will cause more machine idle time compared to

the MCT, and can result in much poorer performance. Thus the relative performance of

the KPB and the MCT may depend on the HC suite of machines, and characteristics of the

tasks being executed.

For each task,  �� ����	 time is spent in ranking the machines for determining the

subset of machines to examine. Once the subset of machines is determined, it takes ����
�		

	

time, i.e., ��	 time to determine the machine assignment. Overall the KPB heuristic takes

 �� ����	 time.

The opportunistic load balancing (OLB) heuristic assigns a task to the machine that be-

comes ready next, without considering the execution time of the task onto that machine. If

multiple machines become ready at the same time, then one machine is arbitrarily chosen.

The complexity of the OLB heuristic is dependent on the implementation. In the imple-

mentation considered here, the mapper may need to examine all � machines to find the

machine that becomes ready next. Therefore, it takes  ��	 to find the assignment. Other

implementations may require idle machines to assign tasks to themselves by accessing a

shared global queue of tasks [54].

As an example of the working of these heuristics, consider a simple system of three

machines, �	, ��, and ��, currently loaded so that expected ready times are as given in

Table 6.1. Consider the performance of the heuristics for a very simple case of three tasks

�	, ��, and �� arriving in that order. Table 6.2 shows the expected execution times of tasks

on the machines in the system. All time values in the discussion below are the expected

values.
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Table 6.2 Expected execution times (arbitrary units).

�	 �� ��

�	 50 20 15
�� 20 60 15
�� 20 50 15

The MET finds that all tasks have their minimum completion time on ��, and even

though�� is already heavily loaded, it assigns all three tasks to��. The time when �	, ��,

and �� will all have completed is 245 units.

The OLB assigns �	 to �	 because �	 is expected to be idle soonest. Similarly, it

assigns �� and �� to �� and �	, respectively. The time when �	, ��, and �� will all have

completed is 170 units.

The MCT determines that the minimum completion time for �	 will be achieved on�	,

and makes this assignment, even though the execution time of �	 on �	 is more than twice

of that on �� (where the completion time would have been only slightly larger). Then

MCT goes on to assign �� to �	, and �� to �� so that the time when �	, ��, and �� will all

have completed is 160 units.

The SA first determines the current value of the load balance index, ", which is ������

or ����. Assume that "� is ���� and that "� is ����. Because " � "�, the SA chooses the

MCT to make the first assignment. After the first assignment, " � ������� � ���� � "�.

So the SA continues to use the MCT for the second assignment as well. It is only after the

third assignment that " � ������� � ����� � "�, so the SA will then use the MET for the

fourth arriving task. The time when �	, ��, and �� will all have completed here is the same

as that for the MCT.

Let the value of � in the KPB be 67% so that the KPB will choose from the two fastest

executing machines to assign a given task. For �	, these machines are �� and ��. Within

these two machines, the minimum completion time is achieved on �� so �	 is assigned to
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��. This is the major difference from the working of the MCT;�	 is not assigned �	 even

though �	 would have its minimum completion time (over all machines) there. This step

saves�	 for any yet-to-arrive tasks that may run slowly on other machines. One such task

is ��; in the MCT it is assigned to ��, but in the KPB it is assigned to �	. The time when

�	, ��, and �� will all have completed using the KPB is 130 units. This is the smallest among

all five heuristics.

6.4.3 Batch mode mapping heuristics

Three batch mode heuristics are described here: (i) the Min-min heuristic, (ii) the Max-

min heuristic, and (iii) the Sufferage heuristic. The Sufferage heuristic has been proposed

as part of the research presented in this thesis. In the batch mode heuristics, meta-tasks are

mapped after predefined intervals. These intervals are defined in this study using one of the

two strategies proposed below.

The regular time interval strategy maps the meta-tasks at regular intervals of time (e.g.,

every ten seconds). The only occasion when such a mapping will be redundant is when: (1)

no new tasks have arrived since the last mapping, and (2) no tasks have finished executing

since the last mapping (thus, machine ready times are unchanged). These conditions can

be checked for, and so redundant mapping events can be avoided.

The fixed count strategy maps a meta-task �
 as soon as one of the following two

mutually exclusive conditions are met: (a) an arriving task makes � �
 � larger than or

equal to a predetermined arbitrary number #, or (b) all tasks in the set � � � have arrived,

and a task completes while the number of tasks that yet have to begin is greater than or

equal to #. In this strategy, the time between the mapping events will depend on the arrival

rate and the completion rate. The possibility of machines being idle while waiting for the

next mapping event will depend on the arrival rate, completion rate, �, and #. (For the

arrival rates in the experiments here, this strategy operates reasonably; in an actual system,

it may be necessary for tasks to have a maximum waiting time to be mapped.)
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The batch mode heuristics considered in this study are discussed in the paragraphs

below. The complexity analysis performed for these heuristics considers a single mapping

event, and the meta-task size is assumed to be equal to the average of meta-task sizes at all

actually performed mapping events. Let the average meta-task size be �.

The Min-min heuristic shown in Figure 6.1 is from [25], and is one of the heuristics

implemented in SmartNet [19]. In Figure 6.1, let !� denote the expected time machine ��

will become ready to execute a task after finishing the execution of all tasks assigned to

it at that point in time. First the �
� entries are computed using the �
� and !� values. For

each task �
, the machine that gives the earliest expected completion time is determined

by scanning the �-th row of the � matrix (composed of the �
� values). The task �� that

has the minimum earliest expected completion time is determined and then assigned to the

corresponding machine. The matrix � and vector ! are updated and the above process is

repeated with tasks that have not yet been assigned a machine.

Min-min begins by scheduling the tasks that change the expected machine ready time

status by the least amount. If tasks �
 and �� are contending for a particular machine �� ,

then Min-min assigns �� to the task (say �
) that will change the ready time of �� less.

This increases the probability that �� will still have its earliest completion time on ��, and

shall be assigned to it. Because at � � �, the machine that finishes a task earliest is also the

one that executes it fastest, and from thereon the Min-min heuristic changes machine ready

time status by the least amount for every assignment, the percentage of tasks assigned their

best choice (PTBC) (on basis of expected execution time) is likely to be higher in Min-min

than with the other batch mode heuristics described in this section (this has been verified

by examining the simulation study data given later in this thesis). The expectation is that a

smaller makespan can be obtained if a larger number of tasks is assigned to the machines

that not only complete them earliest, but also execute them fastest.
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(1) for all tasks �
 in meta-task �� (in an arbitrary order)
(2) for all machines �� (in a fixed arbitrary order)
(3) �
� � �
� � !�
(4) do until all tasks in �� are mapped
(5) for each task in �� find the earliest completion

time and the machine that obtains it
(6) find the task �� with the minimum earliest

completion time
(7) assign task �� to the machine �� that gives the
(8) earliest completion time
(9) delete task �� from ��

(10) update !�
(11) update �
� for all �
(12)enddo

Fig. 6.1. The Min-min heuristic.

The initialization of the �matrix in Line (1) to Line (3) of Figure 6.1 takes ���	 time.

The do loop of the Min-min heuristic is repeated � times and each iteration takes  ���	

time. Therefore, the heuristic takes  ����	 time.

The Max-min heuristic is similar to the Min-min heuristic, and is one of the heuristics

implemented in SmartNet [19]. It differs from the Min-min heuristic (given in Figure 6.1)

in that once the machine that provides the earliest completion time is found for every task,

the task �� that has the maximum earliest completion time is determined and then assigned

to the corresponding machine. That is, in Line (6) of Figure 6.1, “minimum” would be

changed to “maximum.” The Max-min heuristic has the same complexity as the Min-min

heuristic.

The Max-min is likely to do better than the Min-min heuristic in cases where there are

many more shorter tasks than longer tasks. For example, if there is only one long task,

Max-min will execute many short tasks concurrently with the long task. The resulting

makespan may just be determined by the execution time of the long task in this case. Min-

min, however, first finishes the shorter tasks (which may be more or less evenly distributed
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over the machines) and then executes the long task, increasing the makespan compared to

the Max-min.

The Sufferage heuristic (shown in Figure 6.2) is based on the idea that better mappings

can be generated by assigning a machine to a task that would “suffer” most in terms of

expected completion time if that particular machine is not assigned to it. Let the sufferage

value of a task �
 be the difference between its second earliest completion time (on some

machine �	) and its earliest completion time (on some machine ��). That is, using ��

will result in the best completion time for �
, and using�	 the second best.

The initialization phase in Lines (1) to (3), in Figure 6.2, is similar to the ones in the

Min-min and Max-min heuristics. Initially all machines are marked “unassigned.” In each

iteration of the for loop in Lines (6) to (14), pick arbitrarily a task �� from the meta-task.

Find the machine �� that gives the earliest completion time for task ��, and tentatively

assign �� to �� if �� is unassigned. Mark �� as assigned, and remove �� from meta-task.

If, however, machine �� has been previously assigned to a task �
, choose from �
 and ��

the task that has the higher sufferage value, assign �� to the chosen task, and remove the

chosen task from the meta-task. The unchosen task will not be considered again for this

execution of the for statement, but shall be considered for the next iteration of the do loop

beginning on Line (4). When all the iterations of the for loop are completed (i.e., when

one execution of the for statement is completed), update the machine ready time of each

machine that is assigned a new task. Perform the next iteration of the do loop beginning on

Line (4) until all tasks have been mapped.

Table 6.3 shows a scenario in which the Sufferage will outperform the Min-min. Table

6.3 shows the expected execution time values for four tasks on four machines (all initially

idle). In this case, the Min-min heuristic gives a makespan of 93 and the Sufferage heuristic

gives a makespan of 78. Figure 6.3 gives a pictorial representation of the assignments made

for the case in Table 6.3.



- 59 -

From the pseudo-code given in Figure 6.2, it can be observed that the first execution of

the for statement on Line (6) takes  ���	 time. The number of task assignments made

in one execution of this for statement depends on the total number of machines in the HC

suite, the number of machines that are being contended for among different tasks, and the

number of tasks in the meta-task being mapped. In the worst case, only one task assignment

will be made in each execution of the for statement. Then meta-task size will decrease by

one at each for statement execution. The outer do loop will be iterated � times to map the

entire meta-task. Therefore, in the worst case, the time $ ��	 taken to map a meta-task of

size � will be

$ ��	 � ��� �� � �	� � �� � �	�� 
 
 
��

$ ��	 �  ����	

In the best case, there are as many machines as there are tasks in the meta-task, and there

is no contention among the tasks. Then all the tasks are assigned in the first execution of

the for statement so that $ ��	 �  ���	. Let % be a number quantifying the extent of

contention among the tasks for the different machines. The complexity of the Sufferage

heuristic can then be given as  �%��	, where � � % � �. It can be seen that % is equal to

� in the worst case, and is 1 in the best case; these values of % are numerically equal to the

number of iterations of the do loop on Line (4), for the worst and the best case, respectively.

Table 6.3 An example expected execution time matrix that illustrates the situation where
the Sufferage heuristic outperforms the Min-min heuristic.

�	 �� �� ��

�	 40 48 134 50
�� 50 82 88 89
�� 55 68 94 93
�� 52 60 78 108

The batch mode heuristics can cause some tasks to be starved of machines. Let &


be a subset of meta-task �
 consisting of tasks that were mapped (as part of �
) at the
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mapping event � at time �
 but did not begin execution by the next mapping event at �

�.

&
 is the subset of �
 that is included in �

�. Due to the expected heterogeneous nature

of the tasks, the meta-task �

� may be mapped so that some or all of the tasks arriving

between �
 and �

� may begin executing before the tasks in set &
 do. It is possible that

some or all of the tasks in &
 may be included in &

�. This probability increases as the

number of new tasks arriving between �
 and �

� increases. In general, some tasks may be

remapped at each successive mapping event without actually beginning execution (i.e., the

task is starving for a machine). This impacts the response time the user sees.

To reduce starvation, aging schemes are implemented. The age of a task is set to zero

when it is mapped for the first time and incremented by one each time the task is remapped.

Let � be a constant that can be adjusted empirically to change the extent to which aging

affects the operation of the heuristic. An aging factor, ' � �� � �����	, is then computed

for each task. For the experiments in this study, � is arbitrarily set to 10 (e.g., in this case,

the aging factor for a task increases by one after every ten remappings of the task). The

aging factor is used to enhance the probability of an “older” task beginning before the tasks

that would otherwise begin first. In the Min-min heuristic, for each task, the completion

time obtained in Line (5) of Figure 6.1 is multiplied by the corresponding value for �

�
.

As the age of a task increases, its age-compensated expected completion time (i.e., the

value used to determine the mapping) gets increasingly smaller than its original expected

completion time. This increases its probability of being selected in Line (6) in Figure 6.1.

For the Max-min heuristic, the completion time of a task is multiplied by ' . In the

Sufferage heuristic, the sufferage value computed in Line (8) in Figure 6.2 is multiplied by

' .
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6.5 Experimental Results and Discussion

6.5.1 Simulation Procedure

The mappings are simulated using a discrete event simulator ([8, 27, 42]). The task

arrivals are modeled by a Poisson random process. Recall that the simulator contains the

ETC matrix that contains the expected execution times of a task on all machines, for all

the tasks that can arrive for service. The ETC matrix entries used in the simulation studies

represent the �
� values (in seconds) that the heuristic would use in its operation. The

actual execution time of a task can be different than the value given by the ETC matrix.

This variation is modeled by generating a simulated actual execution time for each task

by sampling a Gaussian probability density function with variance equal to three times the

expected execution time of the task and mean equal to the expected execution time of the

task (e.g., [2, 40]). If the sampling results in a negative value, the value is discarded and the

same probability density function is sampled again (i.e., a truncated Gaussian distribution

is sampled). This process is repeated until a positive value is returned by the sampling

process.

In the experiments described here, the ETC matrix is generated with the range-based

method. (This method has been explained in Chapter 4.) The values of �� (see Chapter

4) for low and high task heterogeneities are 1000 and 3000, respectively. The values of

�� (see Chapter 4) for low and high machine heterogeneities are 10 and 100, respectively.

These heterogeneity ranges are based on one type of expected environment for MSHN.

The experimental evaluation of the heuristics is performed in three parts. In the first

part, the immediate mode heuristics are compared using makespan and average sharing

penalty. The second part involves a comparison of the batch mode heuristics. The third part

is the comparison of the batch mode and the immediate mode heuristics. Unless stated oth-

erwise, the following are valid for the experiments described here. The number of machines

is held constant at 20, and the experiments are performed for � � � � ������ �����.

All heuristics are evaluated in a HiHi heterogeneity environment, both for the inconsistent
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and the semi-consistent cases, because these correspond to some of the currently expected

MSHN environments.

For each value of � � �, tasks are mapped under two different Poisson arrival rates, ��

and ��, such that �� � ��. The value of �� is chosen empirically to be high enough to allow

at most 50% tasks to have completed when the last task in the set arrives. That is, for ��,

when at least 50% of the tasks execute no new tasks are arriving. This may correspond to a

situation when tasks are submitted during the day but not at night.

In contrast, �� is chosen to be low enough to allow at least 90% of the tasks to have

completed when the last task in the set arrives. That is, for ��, when at most 10% of the

tasks execute no new tasks are arriving. This may correspond more closely than �� to a

situation where tasks arrive continuously. The difference between �� and �� can also be

considered to represent a difference in burstiness.

Some experiments were also performed at a third arrival rate ��, where �� was high

enough to ensure that only 20% of the tasks have completed when the last task in the set

arrived. The MCT heuristic was used as a basis for these percentages. Unless otherwise

stated, the task arrival rate is set to ��.

Example comparisons are discussed in Subsections 6.5.2 to 6.5.4. Each data point in

the comparison charts is an average over 50 trials, where for each trial the simulated actual

task execution times are chosen independently. The values of performance metrics for each

trial for each heuristic have been normalized with respect to the benchmark heuristic, which

is the MCT for immediate mode heuristics, and the Min-min for the batch mode heuristics.

The Min-min serves as a benchmark also for the experiments where batch mode heuristics

are compared with immediate mode heuristics. Each bar (except the one for the benchmark

heuristic) in the comparison charts gives a 95% confidence interval (shown as an “I” on the

top of the bars) for the mean of the normalized value. Occasionally upper bound, lower

bound, or the entire confidence interval is not distinguishable from the mean value, for the

scale used in the graphs here. More general conclusions about the heuristics’ performance

are in Section 8.
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6.5.2 Comparisons of the immediate mode heuristics

Unless otherwise stated, the immediate mode heuristics are investigated under the fol-

lowing conditions. In the KPB heuristic, � is equal to 20%. This particular value of �

was found to give the lowest makespan for the KPB heuristic under the conditions of the

experiments. For the SA, the lower threshold and the upper threshold for the load balance

index are 0.6 and 0.9, respectively. Once again these values were found to give optimum

values of makespan for the SA.

In Figure 6.4, immediate mode heuristics are compared based on normalized makespan

for inconsistent HiHi heterogeneity. From Figure 6.4, it can be noted that the KPB heuristic

completes the execution of the last finishing task earlier than the other heuristics (however,

it is only slightly better than the MCT). For � � ��� and� = 20, the KPB heuristic forces

a task to choose a machine from a subset of four machines. These four machines have the

lowest execution times for the given task. The chosen machine would give the smallest

completion time as compared to other machines in the set.

Figure 6.5 compares the immediate mode heuristics using normalized average sharing

penalty. Once again, the KPB heuristic performs best. However, the margin of improve-

ment is smaller than that for the makespan. It is evident that the KPB provides maximum

throughput (system oriented performance metric) and minimum average sharing penalty

(application oriented performance metric). Figure 6.6 compares the normalized makespans

of the different immediate mode heuristics for semi-consistent HiHi heterogeneity. Figure

6.7 compares the normalized average sharing penalties of the different immediate mode

heuristics. As shown in Figures 6.4 and 6.6, the relative performance of the different im-

mediate mode heuristics is impacted by the degree of consistency of the ETC matrices.

However, the KPB still performs best, closely followed by the MCT.
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For the semi-consistent type of heterogeneity, machines within a particular subset per-

form tasks that lie within a particular subset faster than other machines. From Figure 6.6,

it can be observed that for semi-consistent ETC matrices, the MET heuristic performs the

worst. For the semi-consistent matrices used in these simulations, the MET heuristic maps

half of the tasks to the same machine, considerably increasing the load imbalance. Al-

though the KPB considers only the fastest four machines for each task for the particular

value of � used here (which happen to be the same four machines for half of the tasks), the

performance does not differ much from the inconsistent HiHi case. Additional experiments

have shown that the KPB performance is quite insensitive to values of � as long as � is

larger than the minimum value (where the KPB heuristic is reduced to the MET heuristic).

For example, when � is doubled from its minimum value of 5%, the makespan decreases

by a factor of about five. However a further doubling of � brings down the makespan by a

factor of only about 1.2.

6.5.3 Comparisons of the batch mode heuristics

Figures 6.8 and 6.9 compare the batch mode heuristics based on normalized makespan

and normalized average sharing penalty, respectively. In these comparisons, unless other-

wise stated, the regular time interval strategy is employed to schedule meta-task mapping

events. The time interval is set to 10 seconds. This value was empirically found to optimize

makespan for the Min-min over other values. From Figure 6.8, it can be noted that the Suf-

ferage heuristic outperforms the Min-min and the Max-min heuristics based on makespan

(although it is only slightly better than the Min-min). However, for average sharing penalty,
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the Min-min heuristic outperforms the other heuristics (Figure 6.9). The Sufferage heuris-

tic considers the “loss” in completion time of a task if it is not assigned to its first choice

in making the mapping decisions. By assigning their first choice machines to the tasks

that have the highest sufferage values among all contending tasks, the Sufferage heuristic

reduces the overall completion time.

Furthermore, it can be noted that the makespan given by the Max-min is much larger

than the makespans obtained by the other two heuristics. Using reasoning similar to that

given in Subsection 6.4.3 for explaining better expected performance for the Min-min, it

can be seen that the Max-min assignments change a given machine’s ready time status by

a larger amount than the Min-min assignments do. If tasks �
 and �� are contending for a

particular machine �� , then the Max-min assigns �� to the task (say �
) that will increase

the ready time of �� more. This decreases the probability that �� will still have its earliest

completion time on �� and shall be assigned to it. Experimental data (e.g., that given in

Figure 6.10) shows that the percentage of tasks assigned their best machine is likely to be

lower for the Max-min than for other batch mode heuristics. It might be expected that a

larger makespan will result if a larger number of tasks is assigned to the machines that do

not have the best execution times for those tasks.

Figure 6.11 compares the makespan of the batch mode heuristics for semi-consistent

HiHi heterogeneity. The comparison of the same heuristics for the same parameters is

shown in Figure 6.12 with respect to normalized average sharing penalty, and in Figure

6.13 with respect to percentage of tasks assigned their best machine. It can be seen that the

results for semi-consistent HiHi are similar to those for inconsistent HiHi.
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The impact of aging on batch mode heuristics is shown in Figures 6.14 and 6.15. The

Min-min without aging is used here to normalize the performance of the other heuristics.

The Max-min benefits most from the aging scheme. Recall that the Min-min performs

much better than the Max-min when there is no aging. Aging modifies the Max-min’s oper-

ation so that tasks with smaller completion times can be scheduled prior to those with larger

completion times, thus reducing the negative aspects of that technique. This is discussed

further in [35].

Figures 6.16, 6.17, 6.18, and 6.19 show the result of repeating the above experiments

with a fixed count strategy for a batch size of 40. This particular batch size was found to

give an optimum value of the makespan for the Min-min heuristic. The Min-min with regu-

lar time interval strategy (interval of ten seconds) is used here to normalize the performance

of the other heuristics. Figure 6.16 compares the regular time interval and fixed count s-

trategies on the basis of normalized makespans given by different heuristics for inconsistent

HiHi heterogeneity. In Figure 6.17, the normalized average sharing penalties of the same

heuristics for the same parameters are compared. It can be seen that the fixed count ap-

proach gives similar results for the Min-min and the Sufferage heuristics. The Max-min

heuristic, however, benefits considerably from the fixed count approach; makespan drops

to about 60% for � � ��1000, and to about 50% for � � �� 2000 as compared to the

makespan given by the regular time interval strategy. A possible explanation lies in a con-

ceptual element of similarity between the fixed count approach and the aging scheme. The

value of # �40 used here resulted in batch sizes that were smaller than those using the ten

second regular time interval strategy. Thus, small tasks waiting to execute will have fewer

tasks to compete with, and, hence, less chance of being delayed by a larger task. Figures

6.18 and 6.19 show the normalized makespan and the normalized average sharing penalty

for the semi-consistent case. As compared to the inconsistent case, the regular time interval



- 67 -

approach gives slightly better results than the fixed count approach for the Sufferage and

the Min-min. For the Max-min, however, for both inconsistent and semi-consistent cases,

the fixed count strategy gives a much larger improvement over the regular time strategy.

It should be noted that all the results given here are for HiHi heterogeneity. Results

may differ for other types of heterogeneity. For example, for LoLo heterogeneity, the

performance of the Max-min is almost identical to that of the Min-min [35].
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(1) for all tasks �� in meta-task �� (in an arbitrary order)
(2) for all machines �� (in a fixed arbitrary order)
(3) ��� � ��� � !�
(4) do until all tasks in �� are mapped
(5) mark all machines as “unassigned”
(6) for each task �� in �� (in a fixed arbitrary order)

/* for a given execution of the for statement,
each �� in �� is considered only once */

(7) find machine �� that gives the earliest
completion time

(8) sufferage value � second earliest completion
time � earliest completion time

(9) if machine �� is unassigned
(10) assign �� to machine ��, delete ��

from ��, mark �� assigned
(11) else
(12) if sufferage value of task �
 already

assigned to �� is less than the
sufferage value of task ��

(13) unassign �
, add �
 back to ��,
assign �� to machine ��,
delete �� from ��

(14) endfor
(15) update the vector ! based on the tasks that

were assigned to the machines
(16) update the � matrix
(17)enddo

Fig. 6.2. The Sufferage heuristic.
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makespan than the Min-min (bar heights are proportional to task execution times).
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Fig. 6.17. Comparison of the average sharing penalty given by the fixed count mapping
strategy and the regular time interval strategy for inconsistent HiHi heterogeneity.
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Fig. 6.18. Comparison of the makespan given by the fixed count mapping strategy and the
regular time interval strategy for semi-consistent HiHi heterogeneity.
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Fig. 6.19. Comparison of the average sharing penalty given by the fixed count mapping
strategy and the regular time interval strategy for semi-consistent HiHi heterogeneity.

6.5.4 Comparing immediate and batch mode heuristics

In Figure 6.20, two immediate mode heuristics, the MCT and the KPB, are compared

with two batch mode heuristics, the Min-min and the Sufferage. The comparison is per-

formed with Poisson arrival rate set to ��. It can be noted that for this “high” arrival rate and

� � ��2000, batch heuristics are superior to immediate mode heuristics. This is because

the number of tasks waiting to begin execution is likely to be larger in the above circum-

stances than in any other considered here, which in turn means that rescheduling is likely to

improve many more mappings in such a system. The immediate mode heuristics consider

only one task when they try to optimize machine assignment, and do not reschedule. Recall

that the mapping heuristics use a combination of expected and actual task execution times

to compute machine ready times. The immediate mode heuristics are likely to approach the
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performance of the batch mode heuristics at low task arrival rates, because then both class-

es of heuristics will have comparable information about the actual execution times of the

tasks. For example, at a certain low arrival rate, the 100-th arriving task might find that 70

previously arrived tasks have completed. At a higher arrival rate, only 20 tasks might have

completed when the 100-th task arrived. The above observation is supported by the graph

in Figure 6.21, which shows that the relative performance difference between immediate

and batch mode heuristics decreases with a decrease in arrival rate. Given the observation

that the KPB and the Sufferage perform almost similarly at this low arrival rate, it might be

better to use the KPB heuristic because of its smaller computational complexity.

Figure 6.22 shows the performance difference between immediate and batch mode

heuristics at an even faster arrival rate of ��. It can be seen that for � � ��2000 batch mode

heuristics outperform immediate mode heuristics with a larger margin here. Although not

shown in the results here, the makespan values for all heuristics are larger for lower arrival

rate. This is attributable to the fact that at lower arrival rates, there is typically more ma-

chine idle time. Figures 6.23, 6.24, and 6.25 show the normalized average sharing penalty

results for the three arrival rates discussed above. Once again the performance gap between

batch and immediate heuristics increases with the increasing arrival rate, the reasons being

the same as those given to explain relative makespan values.
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Fig. 6.20. Comparison of the makespan given by batch mode heuristics (regular time
interval strategy) and immediate mode heuristics for inconsistent HiHi heterogeneity and

an arrival rate of ��.

6.6 Summary

In the immediate mode, for both the semi-consistent and the inconsistent types of HiHi

heterogeneity, the KPB heuristic outperformed the other heuristics on both performance

metrics (however, the KPB was only slightly better than the MCT). The average sharing

penalty gains were smaller than the makespan ones. The KPB can provide good system

oriented performance (e.g., minimum makespan) and at the same time provide good appli-

cation oriented performance (e.g., low average sharing penalty). The relative performance

of the OLB and the MET with respect to the makespan reversed when the heterogeneity

was changed from the inconsistent to the semi-consistent. The OLB did better than the

MET for the semi-consistent case.

In the batch mode, for the semi-consistent and the inconsistent types of HiHi het-

erogeneity, the Min-min heuristic outperformed the Sufferage and Max-min heuristics in

the average sharing penalty. However, the Sufferage performed the best with respect to
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Fig. 6.21. Comparison of the makespan given by batch mode heuristics (regular time
interval strategy) and immediate mode heuristics for inconsistent HiHi heterogeneity and

an arrival rate of ��.

makespan (though, the Sufferage was only slightly better than the Min-min). The batch

mode heuristics were shown to give a smaller makespan than the immediate ones for large

� � � and high task arrival rate. For smaller values of � � � and lower task arrival rates, the

improvement in makespan offered by batch mode heuristics was shown to be nominal.
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Fig. 6.22. Comparison of the makespan given by batch mode heuristics (regular time
interval strategy) and immediate mode heuristics for inconsistent HiHi heterogeneity and

an arrival rate of ��.
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Fig. 6.23. Comparison of the average sharing penalty given by batch mode heuristics
(regular time interval strategy) and immediate mode heuristics for inconsistent HiHi

heterogeneity and an arrival rate of ��.
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Fig. 6.24. Comparison of the average sharing penalty given by batch mode heuristics
(regular time interval strategy) and immediate mode heuristics for inconsistent HiHi

heterogeneity and an arrival rate of ��.
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Fig. 6.25. Comparison of the average sharing penalty given by batch mode heuristics
(regular time interval strategy) and immediate mode heuristics for inconsistent HiHi
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CHAPTER 7

RELATEDWORK: STATIC HEURISTICS

7.1 Overview

This chapter describes and compares eleven static heuristics that can be used in an RMS

like MSHN for mapping meta-tasks to machines. In a general HC system, static mapping

schemes are likely to make better mapping decisions because more time can be devoted

for the computation of schedules off-line than “immediately” in real-time. However, static

schemes require that the set of tasks to be mapped be known a priori, and that the estimates

of expected execution times of all tasks on all machines be known with reasonable accuracy.

A meta-task, in the context of static heuristics, is the set of all independent tasks that are

being considered for mapping. Like the dynamic heuristics in the previous chapter, these

static mapping heuristics are non-preemptive, assume that the tasks have no deadlines or

priorities associated with them, and assume a dedicated HC system.

7.2 Description of Static Heuristics

This section consists of brief definitions of the eleven static meta-task mapping

heuristics that are studied and fully described in [7]. The basic terms and the performance

measure defined for the dynamic heuristics in Section 6.3 and Subsection 6.4.1 hold for

static heuristics as well, except for the terms that characterize the dynamic nature of the

dynamic heuristics, e.g., fixed count strategy.

The descriptions below assume that the machine ready times are updated after each task

is mapped. For cases when tasks can be considered in an arbitrary order, the order used is

the one in which the tasks appeared in the ETC matrix.

This chapter has been summarized from a conference paper [7].
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The static opportunistic load balancing (OLB) heuristic is similar to its dynamic coun-

terpart except that it assigns tasks in an arbitrary order, instead of order of arrival. The

user directed assignment (UDA) heuristic [1] works in the same way as the MET heuristic

except that it maps tasks in an arbitrary order instead of order of arrival. The fast greedy

heuristic [1] is the same as the MCT, except that it maps tasks in an arbitrary order in-

stead of their order of arrival. The static Min-min heuristic works in the same way as

the dynamic Min-min, except a meta-task contains all the tasks in the system. The static

Max-min heuristic works in the same way as the dynamic Max-min, except a meta-task

has all the tasks in the system. The greedy heuristic performs both the static Min-min and

static Max-min heuristics, and uses the better solution [1, 19].

The genetic algorithm (GA) is a popular technique used for searching large solution

spaces. The version of the heuristic used for this study was adapted from [55] for this

particular HC environment. Figure 7.1 shows the steps in a general genetic algorithm [50].

(1) initial population generation;
(2) evaluation;
(3) while (stopping criteria not met)
(4) selection;
(5) crossover;
(6) mutation;
(7) evaluation;
(8) endwhile

Fig. 7.1. General procedure for a genetic algorithm.

The genetic algorithm implemented here operates on a population of 200 chromosomes

(possible mappings) for a given meta-task. Each chromosome is a � � � vector, where

position � �� � � � �	 is the machine to which the task �
 has been mapped. The initial

population is generated using two methods: (a) 200 chromosomes randomly generated

from a uniform distribution, or (b) one chromosome that is the Min-min solution and 199
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random chromosomes. The latter method employs the seeding of the population with a

Min-min chromosome. In this implementation, the GA executes eight times (four times

with initial populations from each method), and the best of the eight mappings is used as

the final solution. The makespan serves as the fitness value for evaluation of the evolution.

Simulated annealing (SA) is an iterative technique that considers only one possible

solution (mapping) for each meta-task at a time. This solution uses the same representation

for a solution as the chromosome for the GA. SA uses a procedure that probabilistically

allows poorer solutions to be accepted to attempt to obtain a better search of the solution

space (e.g., [45]). This probability is based on a system temperature that decreases for

each iteration. As the system temperature “cools,” it is more difficult for currently poorer

solutions to be accepted.

The genetic simulated annealing (GSA) heuristic is a combination of the GA and SA

techniques [46]. In general, GSA follows procedures similar to the GA outlined above.

However, for the selection process, GSA uses the SA cooling schedule and system temper-

ature, and a simplified SA decision process for accepting or rejecting new chromosomes.

The Tabu search keeps track of the regions of the solution space which have already

been searched so as not to repeat a search near these “Tabu” areas [23]. A solution (map-

ping) uses the same representation as a chromosome in the GA approach. Heuristic search-

es are conducted within a region, and the best solution for that region is stored. Then, a

new region, not on the tabu list, is searched. When a stopping criterion is reached, the best

solution among regions is selected.

The final heuristic in the comparison study is known as the A* heuristic. A* is a tree-

based search that has been applied to many other task allocation problems (e.g., [10, 45]).

The technique used here is similar to the one described in [10]. As the tree grows, interme-

diate nodes represent partial solutions (a subset of tasks are assigned to machines), and leaf

nodes represent final solutions (all tasks are assigned to machines). The partial solution

of a child node has one more task �� mapped than the parent node. Each parent node can

be replaced by its � children, one for each possible mapping of ��. The number of nodes
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allowed in the tree is bounded to limit mapper execution time. Less promising nodes are

deleted, and the more promising nodes are expanded. The process continues until a leaf

node (complete mapping) is reached.

7.3 Sample Comparisons for Static Mapping Heuristics

Figures 7.2 and 7.3 show comparisons of the eleven static heuristics using makespan

as the criterion in two different heterogeneity environments. Vertical lines at the top of

the bars show minimum and maximum values for the 100 trials, while the bars show the

averages. It can be seen that, for the parameters used in this study, GA gives the smallest

makespan for both inconsistent HiHi and inconsistent HiLo heterogeneities. The reader is

referred to [7] for more results, details, and discussions.
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HiHi heterogeneity.
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CHAPTER 8

CONCLUSIONS

Heterogeneous computing is a relatively new research area for the computer field. In-

terest in such systems continues to grow, both in the research community and in the user

community.

Some of the different types of HC systems that have been built were discussed here,

including mixed-mode, multi-mode, and mixed-machine. Mixed-machine HC was then

focussed upon. As an example of the design of a resource management system for such

HC environments, the high-level functional architecture of MSHN was provided.

To describe different kinds of heterogeneous environments, a model based on char-

acteristics of the ETC matrix was presented. The three parameters of this model (task

heterogeneity, machine heterogeneity, and consistency) can be changed to investigate the

performance of mapping heuristics for different HC systems and different sets of tasks.

Heterogeneity was quantified in two different ways. Corresponding procedures for gener-

ating the ETC matrices representing various heterogeneous environments were presented.

Several sample ETC matrices were provided for the more involved ETC generation proce-

dure.

The mapping of tasks and meta-tasks, and the scheduling of communications, in HC

environments are active, growing areas of research. Based on existing mapping approaches

in the literature, a three-part taxonomy was proposed. The Purdue HC Taxonomy classified

those characteristics of applications, target platforms, and the mapping strategy that affect

the quality of mapping. These defining traits are incorporated in taxonomy as application

model, target platform model, and mapping strategy model. By defining these three models,

heterogeneous mapping techniques can be classified more accurately. A sample listing of
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mapping heuristics with their Purdue HC Taxonomy classification was given to illustrate

application of the taxonomy.

Dynamic matching and scheduling heuristics for mapping independent tasks onto HC

systems were compared under a variety of simulated computational environments. Five

on-line mode heuristics and three batch mode heuristics were studied.

This study quantified how the relative performance of these dynamic mapping heuristics

depends on (a) the consistency property of the ETC matrix, (b) the requirement to optimize

system oriented or application oriented performance metrics (e.g., optimizing makespan

versus optimizing average sharing penalty), and (c) the arrival rate of the tasks. Thus, the

choice of the heuristic that is best to use in a given heterogeneous environment will be a

function of such factors. Therefore, it is important to include a set of heuristics in a resource

management system for HC, and then use the heuristic that is most appropriate for a given

situation (as will be done in the Scheduling Advisor for MSHN).

Researchers can build on the evaluation techniques and results presented here in fu-

ture efforts by considering other non-preemptive dynamic heuristics, as well as preemptive

ones. Furthermore, in future studies, tasks can be characterized in more complex ways

(e.g., inter-task communications, deadlines, priorities [6]) and using other environmental

factors (e.g., task arrival rates, degrees of heterogeneity, number of machines in the HC

suite, impact of changing the variance when simulating actual task execution times).

Thus, this thesis gives some techniques to model heterogeneity, delineates a taxonomy

for characterizing mapping strategies, examines important heuristics, and provides com-

parisons, as well as acts as a framework for future research.
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APPENDIX

SOURCE CODE

This appendix gives the source code used in the simulations. A makefile has been

provided to compile the source code. The simulator is invoked by the command msimu.

Some of the command line options specify the HC environment, the heuristic to be eval-

uated, and the task arrival rate. Complete option summary could be found by typing just

msimu.
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